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Evaluating disease prediction
models using a cohort whose
covariate distribution differs
from that of the target population
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Abstract

Personal predictive models for disease development play important roles in chronic disease prevention.

The performance of these models is evaluated by applying them to the baseline covariates of participants in external

cohort studies, with model predictions compared to subjects’ subsequent disease incidence. However, the covariate

distribution among participants in a validation cohort may differ from that of the population for which the model will be

used. Since estimates of predictive model performance depend on the distribution of covariates among the subjects to

which it is applied, such differences can cause misleading estimates of model performance in the target population.

We propose a method for addressing this problem by weighting the cohort subjects to make their covariate distribution

better match that of the target population. Simulations show that the method provides accurate estimates of model

performance in the target population, while un-weighted estimates may not. We illustrate the method by applying it to

evaluate an ovarian cancer prediction model targeted to US women, using cohort data from participants in the California

Teachers Study. The methods can be implemented using open-source code for public use as the R-package RMAP

(Risk Model Assessment Package) available at http://stanford.edu/~ggong/rmap/.
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1 Introduction

Personal predictive models for future adverse health outcomes provide important tools in the practice of
preventive medicine. Such models use an individual’s personal covariates to assign him/her a probability of
developing an adverse outcome within a specified future time period. Accurate predictions are needed for
rational decisions about preventive strategies, and for allocating preventive efforts to those who need them
most. The models are often evaluated by comparing their assigned risks to outcome incidence among
participants in longitudinal cohort studies. Specifically, the prediction model is used to assign, say, ten-year
risks to the subjects based on the covariates they report at cohort entry, and these assigned risks are then
compared to the subjects’ outcome incidence during the following ten years.

However, the covariates of participants in large cohort studies may differ from those of the population for
which the predictive model is targeted. Since estimates of predictive model performance can vary with the
covariate distribution of the subjects,1–4 these differences can cause misleading estimates of model performance
in the target population.
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There is a large literature on methods for checking the external validity of prediction models and on modifying
them when they perform poorly in a population of interest.3–6 These papers tend to focus on prediction models for
outcomes occurring at or shortly after risk assignment. In contrast, here we are concerned with long-term
outcomes such as breast cancer development within the next ten years, so that model validation requires
longitudinal cohort data. This difference has three consequences: First, many of the sampled subjects decline to
participate in such long, time-consuming cohort studies, so the covariates of those who do participate may be
selected. Second, because cohort studies are costly they are sparse. For instance, the ovarian cancer prediction
model we discuss is targeted to the entire adult female US population, but currently there are no long-term cohort
data involving a population-based sample of this population. Third, the populations (e.g. female nurses, female
teachers) from which the cohort subjects are sampled often differ from the population for whom the model is
intended. Findings of disease association in these cohorts are nevertheless valuable because of the ‘‘relative-risk
robustness’’ assumption (e.g. if smoking is found to double bladder cancer risk among nurses, it’s likely to do so
among all women). However, because prediction model performance depends on the covariate distribution of the
population to which the model is applied,4–6 this robustness cannot guarantee that a model’s performance in
an external validation cohort indicates how the model would perform in a target population with a different
covariate distribution.

Here, we propose a weighting method for using cohort subjects to evaluate how a predictive model would
perform if applied to a target population. The method involves the following steps. First, we supplement the
cohort subjects’ data with cross-sectional covariate data from an additional sample of subjects whose covariate
distribution represents that of the target population. Second, we use the model to assign risks to the subjects in
both cohort and population-based samples. Third, we classify both samples of subjects into joint covariate
categories and then weight the cohort subjects to make their covariate distribution more closely resemble that
of the target population. Finally, we evaluate model performance using the cohort’s weighted distributions of
assigned risks and outcomes.

The efficacy of the proposed weighting method requires that: (i) the relative risk robustness assumption holds
for all associations relating outcome to model covariates; and (ii) all covariate combinations present in the target
population also be represented in the cohort. If, for example, the target population contains older women with a
history of oral contraceptive use but the cohort lacks such women, then model performance in this subgroup
cannot be evaluated with the cohort data.

The weighted approach proposed here is analogous to other methods that use subject-specific weights to adjust
for selection bias in observational studies. These include the inverse-probability-weighting method7,8 and, for
retrospective case-control studies, the bias-breaking-variable method.9 However, the latter two methods use
weights to reduce bias in estimates of regression coefficients relating risk factors to the outcome, while here the
weighting is performed to reduce bias in estimates of predictive model performance. Thus while all three methods
share the common objective of weighting study participants to make the distribution of their attributes better
represent those of a particular target population, the specific goals and construction of weights differ.

We use simulations to show that weighting can change inferences about predictive model performance.
In particular, it can increase power to detect poor model calibration to the target population, and it can
provide more accurate estimates of model discrimination. We illustrate the method by applying it to evaluate
an ovarian cancer prediction model targeted to the general US population, as applied to participants in the
California Teachers Study (CTS).

2 Methods

We begin by reviewing two criteria for predictive model performance: model calibration and model discrimination.
We then describe the weighted method for evaluating a model’s calibration and discrimination as applied to the
target population.

2.1 Performance measures

Predictive model performance is evaluated using two criteria: calibration and discrimination.10,11 Calibration is the
extent of agreement between model-assigned risks and observed outcome incidence. This can be done visually by
partitioning the cohort into subgroups at different risk, and comparing observed to predicted outcome prevalence
in the subgroups. If needed, this comparison can be formalized by testing the null hypothesis where a model is
well-calibrated to the population underlying a given cohort sample. To implement the test we partition its subjects

2 Statistical Methods in Medical Research 0(0)



into L � 1 subgroups Q1, . . . ,QL according to assigned risks or covariate values, and then assess the sum of
squared and standardized differences between the weighted mean assigned risks �R‘ ¼

P
i2Q‘

wCiri=
P

i2Q‘
wCi

and the weighted mean outcome incidence estimates �̂‘

X2
L ¼

XL
‘¼1

�̂‘
�̂‘ � �R‘
� �2
cvar �̂‘ð Þ ð1Þ

Here, �̂‘ ¼ N�1C

P
i2Q‘

wCi is the weighted proportion cohort subjects in subgroup ‘, and we obtain the cumulative
incidence estimates �̂‘ by applying standard survival data methods to the weighted subjects, as described in the
Appendix. We used the bootstrap with 1000 bootstrap replications to estimate the subgroup-specific variances
var �̂‘ð Þ, ‘ ¼ 1, . . . ,L. Given the proportions �̂1, . . . , �̂L, the goodness-of-fit (GOF) statistic X2

L is asymptotically
equivalent to a quadratic form in L Gaussian variables, whose null distribution is that of a mixture of central chi-
squared distributions: X2

L �
PL

‘¼1 �̂‘�
2
‘1. Several approximations to this distribution have been proposed.12 Here,

we use the exact method of Davies,13 which has been found to perform well and can be implemented in the
R-package CompQuadForm.

A predictive model’s discrimination describes its ability to distinguish outcome-positive from outcome negative
subjects (i.e. those who do and do not develop the outcome in the specified time period). The most commonly used
discrimination measure for a predictive model is its concordance, defined as the probability that the risk assigned to
an outcome-positive person exceeds that assigned to an outcome-negative one

AUC ¼ Pr Ri 4RjjYi ¼ 1 & Yj ¼ 0
� �

ð2Þ

Here Yi¼ 1 if the ith subject is outcome-positive and Yi¼ 0 if he/she is outcome negative. This measure is also
called the area under the receiver operating characteristic (ROC) curve, or AUC.10 To estimate AUC and its 95%
confidence interval, we assume that subjects’ censoring times are independent of both their assigned risks and their
outcome times, and use the weighted version of the estimator proposed by Hung and Chiang14 and Blanche et al.15

as described in the Appendix.

2.2 The weighting method

To implement the method, we obtain an additional population-based sample of model covariates for NP subjects
from the target population, and use them in the model to assign risks to all subjects in this sample for comparison
with the risks assigned to the cohort subjects. Then, we classify the two samples according to a common set of J
joint covariate categories, and assign cohort subject i the weight

wCi ¼
XJ
j¼1

’̂Pj
’̂Cj

1 i 2 cat jð Þ, i ¼ 1, . . . ,NC ð3Þ

Here, ’̂Cj and ’̂Pj denote the proportions of cohort and population subjects, respectively, with covariates in category
j, j¼ 1, . . ., J, and 1(E) is the indicator function assuming the value 1 if event E is true and zero otherwise. Note that:
(a) the sum

PNC

i¼1 wCi of the weights (1) over all cohort subjects is their total count NC; (b) the standard (unweighted)
analyses correspond to weights wCi¼ 1 for all cohort subjects; and (c) a weighted analysis assigns weights wCi< 1 to
subjects with overrepresented covariates, and weights wCi> 1 to those with underrepresented covariates, in the
cohort compared to the population. Finally, we use the weights (3) to obtain weighted tests of calibration and
weighted estimates of concordance. The weighted GOF tests X2

L involve subgroup-specific weighted mean assigned
risk and weighted outcome incidence estimates described in the Appendix.

3 Simulation

We used simulated data to evaluate the proposed weighting strategy for evaluating predictive model performance
using cohort subjects whose covariate distribution differs from that of the target population. Specifically,
we generated and analyzed data in each of E¼ 1200 replications. In each replication, we generated covariate
data for subjects in three cohorts and one population-based sample, and used the covariates of cohort subjects to
generate censored outcome data. We then analyzed the data by using the subjects’ covariates in hypothetical
predictive models to assign them outcome risks, and if cohort and population risk distributions differed
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significantly, we calculated the weighted GOF tests and weighted concordance estimates described in the
Appendix. For comparison, we also evaluated these measures without using weighting. Finally, we used
summary statistics averaged over the E replications to assess the impact of cohort selection bias on model
performance with and without using weighting.

3.1 Data generation

In each replication, we generated cross-sectional covariate and corresponding censored outcome data for three
cohort samples, labeled C1–C3, each containing NC¼ 10,000 subjects, and cross-sectional covariate data for
subjects in a population-based sample P containing NP¼ 5000 subjects. We assumed that subjects’ outcome
probabilities depend on their values for a covariate vector x¼ (x1, x2), whose population distribution is
Gaussian with mean and variance

� ¼ �2:50, 0:50ð Þ and V¼ diag �21, �
2
2

� �
¼ diag 0:640, 0:562ð Þ ð4Þ

For cohort C1, we oversampled subjects with small values of x1 (biased sampling). To do so, for each subject
we: (a) randomly chose a vector x¼ (x1,x2) from the Gaussian distribution (4); (b) classified his/her standardized
covariate vector z ¼ z1, z2ð Þ ¼ x1 � �1ð Þ=�1, x2 � �2ð Þ=�2½ � into one of the four joint covariate categories shown in
Table 1; and (c) sampled the subject with the category-specific selection probability shown in Table 1. We then
repeated steps (a) to (c) until 10,000 subjects were selected. We generated covariates for subjects in cohort C2

similarly, but now we oversampled subjects with small values of x2. We used simple random sampling to generate
covariates for subjects in cohort C3 and the population-based sample P. (We included the unbiased cohort C3 to
assess the effects of weighting subjects when cohort and population risk distributions differed only by chance.)

We then used each cohort subject’s covariate vector x to generate times t0 and t1 to censoring and outcome,
respectively, according to independent exponential density functions of the form

f� t; xð Þ ¼ �� xð Þe
��� xð Þt, � ¼ 0, 1, with �0 xð Þ � �0 ¼ 0:056 and �1 xð Þ ¼ ex1þx2 ð5Þ

In the absence of censoring, the density f1 t; xð Þ gives the probability of outcome occurrence by time t*¼ 1 for an
individual with covariates x as P xð Þ ¼ 1� exp �ex1þx2ð Þ. We recorded each subject’s survival data as (t,y), where
t¼ min(t0, t1, t*), and the outcome status indicator y¼ 1 if t¼ t1 (outcome-positive), y¼ 0 if t¼ t* (outcome-
negative) with y unknown if t¼ t0 (outcome-censored).

3.2 Data analysis

In each replication, we applied two hypothetical predictive models to the covariate data for cohort and population
subjects. Model A assigns a subject with covariates x the actual outcome probability RA xð Þ ¼ P xð Þ ¼
1� exp �ex1þx2ð Þ used to generate his/her uncensored survival data. In contrast, Model B assigns this subject an

Table 1. Distribution of covariates x¼ (x1, x2) in J¼ 4 categories for subjects from three cohorts.

Covariate sampling scheme

Covariate

category

Cohort 1. Oversampling

small values of x1

Cohort 2. Oversampling

small values of x2 Cohort 3. Unbiased sampling

x1��1

�1

x2��2

�2

Sampling

probability

Proportion of

subjects Weighta
Sampling

probability

Proportion

of subjects Weight

Sampling

probability

Proportion

of subjects Weight

<0 <0 1.00 0.4762 0.525 1.00 0.4762 0.525 1.00 0.25 1.00

<0 �0 1.00 0.4762 0.525 0.05 0.0238 10.50 1.00 0.25 1.00

�0 <0 0.05 0.0238 10.50 1.00 0.4762 0.525 1.00 0.25 1.00

�0 �0 0.05 0.0238 10.50 0.05 0.0238 10.50 1.00 0.25 1.00

aWeight for cohort subjects in category j is ’̂Pj=’̂Cj , where ’̂Pj or ’̂Cj

� �
denotes the proportion of subjects in the target population (cohort population)

that belong to category j, j¼ 1,. . .,4.
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incorrect outcome probability RB xð Þ ¼ 1� exp �ex1þ0:5x2
� �

. We used each model to assign risks to subjects in
cohorts C1–C3 and to the target population sample P. We then evaluated model calibration and discrimination
with and without weighting the cohort subjects. To weight them, we classified each subject into one of the J¼ 4
categories of Table 1 and obtained weights (3) using the empirical proportions of subjects in cohort and
population-based samples.

3.3 Simulation results

To evaluate model calibration, we applied the GOF statistic X2
L of equation (1) to each of the 1200 data sets and

assessed the proportion of data sets in which the hypothesis of good model calibration was rejected at the 5%
significance level. For each data set, and for each of the two models, we evaluated X2

L for the entire cohort (L¼ 1)
and for L¼ 4 subgroups determined by the subjects’ assigned risks as: (1) [0.00,0.10), (2) [0.10,0.15), (3) [0.15,0.20),
(4) 0.20,1.00]. The upper half of Table 2 shows that, for the well-calibrated Model A, the empirical test size of the
overall test statistic X2

1 was slightly lower than the nominal 5%, particularly when weighting was used with data
from the two biased cohorts C1 and C2. However, agreement between actual and nominal size was better for the
subgroup-specific test X2

4. In contrast, the lower half of the table shows that weighting outperforms an
unweighted analysis in detecting the poor calibration of Model B with data from a biased cohort. Specifically,
when applied to cohort C2 (obtained by oversampling subjects with low values of covariate x2), the unweighted
analyses had low power (39.3% for X2

1 and 34.6% for X2
4) to detect the poor model fit, while the weighted analyses

had nearly 100% power.
We also evaluated model discrimination by estimating the concordance statistic (2) for each cohort and each of

the two predictive models. We compared these estimates with the theoretical concordance of the two models in a
hypothetically infinite uncensored population, given by AUCA¼ 0.790 and AUCB¼ 0.776 for Models A and B,
respectively. Table 3 shows close agreement between empirical and theoretical concordance for both models when
applied to the unbiased cohort C3. However, the unweighted concordance estimates obtained from the two biased
cohorts C1 and C2 were appreciably lower than their theoretical values, indicating substantial downward bias for
both the well-calibrated Model A and the poorly calibrated Model B. In contrast, the weighted analysis showed
close agreement with the theoretical values. As expected, the weighted estimates showed greater variability than
did those of the unweighted analyses. This increased variability reflects the additional uncertainty involved in the
weighting procedure.

4 Application to data

We illustrate the weighted method by using it to evaluate a predictive model for epithelial ovarian cancer
occurrence within 10 years of risk assignment,16 as applied to a target population of US white women aged

Table 2. Proportion of 1200 data sets rejecting (at 5% significant level) the hypothesis that Models A and B

are well-calibrated.

Overall calibration (L¼ 1 group) Subgroup-specific calibration (L¼ 4 groups)a

Analysis type Analysis type

Cohort Unweighted Weighted Unweighted Weighted

Model Ab

1 0.035 0.016 0.047 0.061

2 0.033 0.015 0.048 0.046

3 0.028 0.020 0.055 0.052

Model Bc

1 1.000 1.000 1.000 0.991

2 0.393 1.000 0.346 0.980

3 1.000 1.000 1.000 1.000

aL¼ 4 subgroups determined by PPM-assigned risks in intervals [0, 0.10], [0.10, 0.15], [0.15–0.20], [0.20, 1].
bModel A is well-calibrated to simulated population.
cModel B is poorly calibrated to the simulated population.
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50–79 years with at least one intact ovary and no prior ovarian cancer. We evaluated this model by application to
participants in the California Teachers Study (CTS), a cohort whose distribution of ovarian cancer risk factors
may differ from that of the target population. To estimate the population distribution, we also assembled covariate
data from four cross-sectional National Health and Nutrition Surveys (NHANES) conducted by the National
Center for Health Statistics (NCHS) in years 1999–2000, 2001–2002, 2003–2004, and 2005–2006. (https://wwwn.
cdc.gov/nchs/nhanes/Search/Nhanes99_00.aspx). Our goals were to compare the assigned risk distributions of
CTS and NHANES subjects, and: (a) evaluate model performance by weighting the CTS subjects to make
their covariate distribution similar to that of the US population; and (b) determine whether the performance
estimates differ from those obtained without weighting the CTS subjects.

4.1 Ovarian cancer predictive model

The predictive model of Pfeiffer et al.16 assigns a woman a 10-year ovarian cancer probability based on her values
x¼ (x1, . . . , x5) of five covariates reported at the time of risk assignment. Here x1, . . . , x5 represent, respectively,
her age (years), parity (0,1–2,3þ full-term pregnancies), years of menopausal hormone therapy (MHT) (0,< 10,
10þ), history of oral contraceptive (OC) use for at least one year (yes,no), and first-degree family history (FH) of
breast or ovarian cancer (yes, no) The values of these covariates determine her risk as

R xð Þ ¼ 1� exp �e	2x2þ���þ	5x5
Z x1þ10

x1

�0 uð Þdu

� �

where �0ðuÞ is the baseline hazard rate at age u for a nulliparous woman with no MHT use, less than a year of OC
use, and no FH of breast or ovarian cancer. (See Pfeiffer et al.16 for a description of how the baseline rate and
regression coefficients were obtained.) We imputed values for incomplete covariate data in both CTS and
NHANES samples by using multiple imputation techniques17 implemented in SAS 9.4 (SAS Institute, Cary
NC). The FH covariate was missing for all NHANES subjects, so for each subject we imputed a probability of
FH positivity using the complete data from an earlier NHANES sample of N¼ 1986 subjects18 via logistic
regression of FH positivity against age and the occurrence and timing of prior personal breast cancer.
To evaluate the impact of uncertainty in the imputed FH covariate, we also imputed this covariate as the
prediction of a random forest,19 and then assigned each NHANES subject a corresponding Pfeiffer-model risk.
We found high correlation (r¼ 0.97) between the two sets of Pfeiffer-model risks, suggesting that the distribution
of the NHANES risks is robust to imputation uncertainty.

4.2 CTS cohort

In 1995–1996, the CTS enrolled 133,479 female California public school professionals (active or retired)
ages 22 years or older at recruitment, and followed them for subsequent morbidity and mortality through

Table 3. Mean and standard deviation (SD) of 1200 estimates of PPM concordancea to population

risks.

Analysis type

Unweighted Weighted

Cohort Mean SD Mean SD

Model A

1 0.750 0.008 0.788 0.014

2 0.756 0.008 0.789 0.014

3 0.791 0.006 0.791 0.006

Model B

1 0.739 0.008 0.775 0.013

2 0.748 0.008 0.775 0.015

3 0.777 0.006 0.777 0.006

aTrue concordance is 0.790 for Model A and 0.776 for Model B.
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31 December 2011. Further information about the cohort can be found in Bernstein et al.20 The present analysis
includes covariates and subsequent ovarian cancer incidence of NC¼ 46,743 CTS subjects who at enrollment met
the required eligibility criteria. We applied the Pfeiffer model to subjects’ covariate data and thus obtained a
distribution of assigned risks among these CTS subjects.

4.3 NHANES sample

Each of the four NHANES surveys is a stratified multistage sample of the non-institutionalized civilian US
population.21,22 Subjects were selected using a complex sampling design, to ensure unbiased and efficient
representation of this population.21 To accommodate the NHANES sampling design, we followed Johnson
et al.22 to extract from the NCHS website (http://wwwn.cdc.gov/nchs/nhanes/search/DataPage.aspx) a subject-
specific sampling weight, si, for each of the NP¼ 2009 NHANES subjects who met the age-, race- and ovarian
eligibility criteria of the current target population. We then standardized each subject’s sampling weight as
&Pi ¼ si=�s, where �s ¼ N�1P

PNP

i0¼1 si, i ¼ 1, ::,Np is the mean of the sampling weights. In this way we obtained a
joint covariate distribution and corresponding distribution of model-assigned risks among the NHANES subjects
that provide unbiased estimates of these distributions among white females in the US target population.

4.4 Comparison of assigned risks in CTS and NHANES

The left panel of Figure 1 compares the unweighted distribution of model-assigned risks among the CTS subjects
to that of the NHANES subjects. The figure shows higher risks for the CTS subjects than those for the NHANES
sample; indeed a test of the null hypothesis of a common distribution for the two underlying populations was
rejected (P< 10�4). This difference is supported by comparison of the marginal distributions of the five Pfeiffer
model covariates shown in Table 4: CTS subjects were more likely than NHANES subjects to be nulliparous, to
have a family history of breast or ovarian cancer, and to have used MHT. Accordingly, we classified both samples
into the J¼ 3� 3� 2� 2� 3¼ 108 joint covariate categories corresponding to the marginal categories of Table 4,
and used formula (3) to weight each of the CTS subjects. The right panel of Figure 1 shows the resulting weighted
distributions, which do not differ significantly (P¼ 0.807).

4.5 Performance evaluation

We next evaluated the calibration and discrimination of the Pfeiffer model to the outcomes in the CTS cohort, with
and without using the weighted method. Specifically, we evaluated the GOF statistic X2

L of equation (1) for the

Unweighted

Estimated risk
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0
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Figure 1. Unweighted (left panel) and weighted (right panel) histograms of assigned risks among California Teachers Study (CTS)

subjects (shaded bars) compared to those among the NHANES subjects. The unweighted cohort risks were higher than those of the

NHANES sample (P< 10�4), while the weighted risk distributions were similar (P¼ 0.81).
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entire cohort (L¼ 1 subgroup) and for L¼ 4 subgroups determined by assigned risks in the intervals (0–0.004],
(0.004–0.006], (0.006–0.008], and (0.008–1]. The overall GOF statistic was X2

1 ¼ 3:84ðP ¼ 0:053Þ for the
unweighted analysis and X2

1 ¼ 4:63 ðP ¼ 0:031Þ for the weighted analysis, providing stronger evidence of poor
fit. Figure 2 contrasts subgroup-specific mean assigned risks with outcome incidence estimates for each of the L¼ 4
subgroups, based on the unweighted (left panel) and weighted (right panel) analyses. The corresponding GOF
statistics were X2

4 ¼ 1.55 (P¼ 0.185) for the unweighted analysis and X2
4 ¼ 3.24 (P¼ 0.016) for the weighted

analysis. These results suggest that the weighted analysis detects poor fit to the population that is not evident
in the unweighted analysis. Indeed, as shown in the right panel of Figure 2, the weighted mean assigned risk among
subjects in the lowest assigned risk group substantially exceeded the weighted estimate of ovarian cancer incidence.
While the unweighted proportion of subjects in this risk group was 25.0%, the weighted proportion was 36.7%,
indicating a larger proportion of low risk subjects in the general population than in the CTS cohort. Thus for this
example, the weighted and unweighted analyses yield different inferences about the calibration of the Pfeifer model
to the US population. And their difference supports the simulation findings that an unweighted analysis of selected
cohort subjects can lack power to detect problems in a model’s calibration to the target population, while a
weighted analysis can correctly detect it.

4.6 Discrimination

The weighted and unweighted analyses of the Pfeiffer model’s discrimination based on the CTS data revealed
nearly identical concordance estimates: dAUC¼ 0.621 (95% confidence interval 0.588, 0.653) for the un-weighted
analysis, and dAUC¼ 0.628 (0.585, 0.670) for the weighted analysis. Thus for this example, adjusting for cohort
selection bias has little effect on the model’s discriminatory ability: both analyses indicate relatively poor model
discrimination, which is characteristic of predictive models for ovarian cancer.16

In summary, the weighted analysis suggests that if the Pfeiffer predictive model were fit to both the
covariates and the subsequent ovarian cancer incidence of a random sample of the general US target
population, it would show poorer calibration, but similar discrimination to estimates based on women at
higher risk of the disease.

Table 4. Distributions of Caucasian CTS and NHANESa subjects who at interview were

aged 50–79 years and reported no prior history of ovarian cancer or bilateral oophorectomy.

Covariate CTS NHANES

No. of subjects 46,743 2009

Age (yrs)

50–59 0.483 0.480

60–69 0.311 0.302

70–79 0.206 0.218

Parity

0 0.195 0.115

1–2 0.461 0.405

3þ 0.344 0.479

yrs OC use

< 1 0.504 0.457

1þ 0.495 0.543

Family hx

yes 0.168 0.087

no 0.832 0.913

yrs MHT use

0 0.336 0.616

<10 0.471 0.222

10þ 0.193 0.162

aCross-sectional NHANES data in years 1999–2000, 2001–2002, 2003–2004, and 2005–2006.
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5 Discussion

We have proposed a weighting strategy for using external cohort data to evaluate how a personal predictive model
would perform if applied to a target population for which the model is needed, when the target and cohort samples
may have different covariate distributions. (When the likelihood of different risk distributions in the two
populations is uncertain, one could regress subjects’ binary population membership indicators against their
assigned risks, and check for significant association. However this strategy is limited by the sample-size
dependence of detecting such an association.) The strategy involves partitioning both samples into a common
set of joint covariate categories, and then weighting the cohort subjects in each category in proportion to the
category-specific relative frequencies of subjects in target and cohort samples. The strategy’s efficacy rests on two
assumptions: (1) that the model covariates have the same outcome effect-sizes in each population; and (2) that each
joint category represented in the target population also contains cohort subjects.

We used simulations to compare weighted and unweighted model performance assessments, when the
distribution of covariates in cohort and target samples do and do not differ. We also illustrated the methods by
application to a model for the probability of ovarian cancer diagnosis within ten years of risk assessment, as
applied to the CTS cohort of white women. The distribution of ovarian cancer risks in this cohort differs from that
of the US female white population represented by the NHANES samples: comparison of risks among women in
the two samples shows that, in general, CTS participants have higher levels of ovarian cancer risk factors and
higher ovarian cancer risks than do US white women, in agreement with the earlier observations.20 Weighting the
CTS cohort substantially reduced these risk differences.

For assessing model calibration, the simulations showed that an unweighted analysis of a biased cohort can miss
poor model calibration to the target population when it exists, while a weighted analysis correctly detects the poor
calibration. This phenomenon was also evident when using the CTS data to evaluate how well the Pfeiffer ovarian
cancer model matches the risks of US women. Specifically, the unweighted calibration test produced little evidence
for poor model fit, while the weighted test statistic showed statistically significant evidence for poor calibration.
These findings suggest that in the presence of cohort/population covariate differences, a nonsignificant goodness-of-
fit statistic obtained using an unweighted analysis cannot be interpreted as evidence that the model is well-calibrated
to the target population. A more reliable assessment of such calibration would require a weighted analysis.

For assessing model discrimination, the simulations showed that using an unweighted analysis of a biased cohort
can produce concordance estimates that are biased downward, while the weighted-based concordance estimates
agreed well with the theoretical concordances. Yet for the ovarian cancer example, despite large differences in the
risk distributions of the CTS participants and the US population (as estimated using NHANES data), the weighted
and unweighted estimates for the Pfeiffer model’s concordance were essentially the same. Since the concordance
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Figure 2. Plot of unweighted values of outcome incidence vs assigned risks (left panel) and corresponding weighted values (right panel).
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measure C is invariant to rank-preserving risk transformations, this similarity suggests that the selection bias of CTS
subjects causes a rank-preserving transformation of risks in the US population.
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Appendix

Here we describe, for an arbitrary subset of the cohort subjects, weighted estimates of: (a) their cumulative
incidence of outcome occurrence by time t*; and (b) the concordance between a prediction model and outcome
status (outcome occurrence by t* vs. outcome-free at t*). The weights are positive numbers satisfyingPNC

i¼1 wCi ¼ NC, where NC is the number of subjects in the entire cohort. The standard ‘‘unweighted’’ estimates
are obtained by setting all cohort subjects’ weights wCi equal to one, i¼ 1, . . . ,NC.

Let T and Z denote a subject’s times to outcome and censoring, respectively. We observe only X¼min(T,Z) and the
value of an indicator " ¼ 1 X ¼ Tð Þ. We assume that a subject’s time Z to censoring is independent of both his assigned
risk and outcome time T. Let ST tð Þ ¼ Pr T4 tð Þ denote the outcome survival function at time t after cohort entry, with
similar notation SZ tð Þ ¼ Pr Z4 tð Þ and SX tð Þ ¼ Pr X4 tð Þ for the survival functions of censoring and the minimum
occurrence time X of outcome and censoring. We used weighted versions of well-known nonparametric estimates of
these survival functions.23 To describe them, let Yi tð Þ denote the left-continuous random process taking value 1 if the ith
subject is at risk of outcome or censoring at time t, and zero otherwise. Also let N

1ð Þ
i tð Þ ¼ 1 Xi 	 t,ð

"i ¼ 1Þ and N
0ð Þ
i tð Þ ¼ 1 Xi 	 t, "i ¼ 0ð Þ denote the right-continuous counting processes taking value 1 if at time t the

ith subject is outcome positive and censored, respectively, and zero otherwise. Finally, let t1 5 � � � 5 tK and
z1 5 � � � 5 zJ denote the distinct occurrence times of outcomes and censoring, respectively. Then for t 	 t
 let

n tð Þ ¼
XNC

i¼1

wCiYi tð Þ ð6Þ

denote the weighted count of subjects at risk just before time t, and let

d
1ð Þ
k ¼

XNC

i¼1

wCiYi tkð ÞN
1ð Þ
i tkð Þ

d
0ð Þ
j ¼

XNC

i¼1

wCiYi zj
� �

N
0ð Þ
i zj
� � ð7Þ

denote the weighted counts of subjects who develop the outcome at time tk, k¼ 1, . . . ,K, or who are censored at
time zj, j¼ 1, . . . , J. The weighted survival function estimates at time t 	 t
 are

ŜT tð Þ ¼
Y

k:tk	t

n tkð Þ � d
1ð Þ
k

n tkð Þ

 !

ŜZ tð Þ ¼
Y

j:zj	t

n zj
� �
� d

0ð Þ
j

n zj
� � !

ŜX tð Þ ¼
1

NC

XNC

i¼1

wCi1 Xi 4 tð Þ

ð8Þ

Note that ŜT tð Þ and ŜZ tð Þ are weighted Kaplan–Meier estimates for the survival functions for outcome and
censoring, while ŜX tð Þ is a weighted empirical survival function estimate.

Weighted estimates of outcome incidence. For any subgroup of cohort subjects, the weighted estimate of the
cumulative outcome incidence � at time t* is �̂ ¼ 1� ŜT t
ð Þ, where ŜT t
ð Þ is given by equation (8). In the absence
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of censoring, the incidence estimates �̂ reduce to weighted binomial proportions of subjects who develop the
outcome during the risk period.

Weighted estimates of concordance. We rewrite a predictive model’s concordance (2) as

AUC ¼ Pr Ri 4RjjTi 	 t
,Tj 4 t

� �

¼
Pr Ti 	 t
,Tj 4 t
,Ri 4Rj

� �
Pr Ti 	 t
,Tj 4 t

� �

¼
Pr Zi 4Ti,Ti 	 t
,Xj 4 t
,Ri 4Rj

� �
Pr Zi 4Tið Þ 1� ST t
ð Þ½ �SX t
ð Þ

ð9Þ

where ST �ð Þ,SZ �ð Þ and SX �ð Þ ¼ ST �ð ÞSZ �ð Þ are, respectively, the survival functions for T, Z, and X. Based on the
right side of equation (9), Hung and Chiang14 and Blanche et al.15 proposed estimating AUC as

dAUC ¼
1

NC NC � 1ð Þ

X
i6¼j

wCiwCj1 Xi ¼ Ti 	 t
,Xj 4 t
,Ri 4Rj

� �
ŜZ Xið Þ

( ),
1� ŜT t
ð Þ
h i

ŜX t
ð Þ
n o

ð10Þ

where ŜT �ð Þ, ŜZ �ð Þ and ŜX �ð Þ are given by equation (8).
We used the bootstrap to estimate the variances of the estimates �̂ and Ĉ.
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