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Two-stage sampling designs
for external validation of
personal risk models
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Abstract

We propose a cost-effective sampling design and estimating procedure for validating personal risk models

using right-censored cohort data. Validation involves using each subject’s covariates, as ascertained at

cohort entry, in a risk model (specified independently of the data) to assign him/her a probability of an

adverse outcome within a future time period. Subjects are then grouped according to the magnitudes of

their assigned risks, and within each group, the mean assigned risk is compared with the probability of

outcome occurrence as estimated using the follow-up data. Such validation presents two complications.

First, in the presence of right-censoring, estimating the probability of developing the outcomes before

death requires competing risk analysis. Second, for rare outcomes, validation using the full cohort requires

assembling covariates and assigning risks to thousands of subjects. This can be costly when some

covariates involve analyzing biological specimens. A two-stage sampling design addresses this problem

by assembling covariates and assigning risks only to those subjects most informative for estimating key

parameters. We use this design to estimate the outcome probabilities needed to evaluate model

performance and we provide theoretical and bootstrap estimates of their variances. We also describe

how to choose two-stage designs with minimal efficiency loss for a parameter of interest when the

quantities determining optimality are unknown at the time of design. We illustrate these methods by

using subjects in the California Teachers Study to validate ovarian cancer risk models. We find that a

design with optimal efficiency for one performance parameter need not be so for others, and trade-offs

will be required. A two-stage design that samples all outcome-positive subjects and more outcome-

negative than censored subjects will perform well in most circumstances. The methods are

implemented in Risk Model Assessment Program, an R program freely available at http://med.

stanford.edu/epidemiology/two-stage.html.
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1 Introduction

A personal risk model assigns to an individual a probability of developing an adverse outcome in a
clinically relevant time period, using his or her covariates. Examples include models for breast
cancer development within 5 years,1 and prostate cancer recurrence within 10 years of diagnosis.2

The outcome probabilities of interest have been called absolute risks by Benichou and Gail,3 who
stress the importance of using absolute risk as the metric when evaluating disease prevention
strategies. Discussion of risk model development, including choice of covariates, allowance
for competing mortality and choice of risk period length, can be found in Gail and Pfeiffer,4

Janes et al.,5 and Whittemore.6

We address the problem of how to use cohort data to assess the performance of a risk model that
has been completely specified using data external to the cohort. Such assessment involves applying
the model to subjects in a cohort who have been followed for occurrence of the outcome or death
from other causes during the defined risk period. Model performance is assessed by estimating
outcome probabilities within subgroups of subjects determined by assigned risk, and then
examining the behavior of assigned risks in relation to these outcome probabilities. Consider, for
example, the problem of validating a prespecified ovarian cancer risk model with data from the
California Teachers Study (CTS). This cohort study consists of 133,479 female California public
school teachers and administrators who completed a mailed questionnaire in 1995–1996, and who
have been followed for subsequent cancer incidence and mortality through 31 December 2007 (see
references7,8 for more information). We used the baseline covariates of each eligible subject in an
ovarian cancer risk model to assign her a probability of developing ovarian cancer within 12 years of
cohort entry. To check the model’s accuracy (also called calibration), we compare how well its
assigned risks agree with the estimated 12-year ovarian cancer probabilities in subgroups of
women. For example, Figure 1A is a plot of such probabilities versus mean assigned risks in
quintiles of risk assigned by a model described in section 4 and in the Supplement. Such plots are
called attribute diagrams.9 Model inaccuracy can be summarized by the bias statistic B,6 which
averages the squared vertical distances of the points from the diagonal line in this figure. A test of
the null hypothesis that the model is well calibrated, i.e. that B¼ 0, is provided by the Hosmer–
Lemeshow test statistic.10

In addition to a model’s accuracy, we also need to know how well it discriminates individuals with
substantially different actual risks. A common measure of such discrimination is the model’s
concordance, which is the probability that it assigns a higher risk to a woman who develops
ovarian cancer than to one who does not.3 This measure (which equals the AUC, defined as the
area under the (AUC) model’s receiver operating characteristic curve),11,12 ranges from 0.5 for a
model with no discrimination to 1.0 for a model that assigns higher risks to all who develop ovarian
cancer than to all who do not develop the disease during the risk period.

Assessing a model’s accuracy and discrimination presents two complications. First, some subjects
have unknown outcome status. For the CTS cohort, for example, we assigned each subject a follow-
up time, defined as the number of days between her cohort entry and the first occurrence of ovarian
cancer, death, last observation and 12 years of follow-up. Thus, subjects are of three types: (i)
outcome-positive subjects, who develop ovarian cancer within the risk period; (ii) outcome-
negative subjects, who die from other causes within the period or who survive it without the
outcome; and (iii) outcome-unknown subjects (also called censored subjects), who were last
observed alive and outcome-free before the full 12 years of follow-up. For the CTS data, 32% of
eligible subjects were censored.

In the absence of censored subjects, an unbiased estimate of the outcome probability within a risk
group is just the binomial proportion of those who develop the outcome within the risk period.
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This binomial estimate has been used in applications for which the fraction of censored subjects was
small.13 However, when censored subjects are numerous, their exclusion can cause substantial
upward bias in outcome probability estimates. The magnitude of this bias depends on the ratio of
censoring probability to event probability, where an event is outcome or death during the risk

Figure 1. Estimated outcome probabilities (and 95% confidence intervals) versus mean assigned risk in quintiles of

risk assigned by Model 1 (see text). (A) complete sampling and (B) two-stage sampling with two sampling categories:

outcome positive (sampled with a probability of 1%) and all other subjects (sampled with a probability of 10%).
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period. For example, if the censoring probability is one-tenth the event probability, excluding
censored subjects produces an outcome probability estimate roughly 1.1 times its actual value. In
contrast, if the censoring probability is three times the event probability (as observed in the CTS
data), the outcome probability estimate is roughly four times the actual value. Unbiased estimates
require an approach that accommodates the survival times of censored subjects, while treating death
from other causes as a competing risk.14–16 This approach specifies the group-specific outcome
probability (i.e. absolute outcome risk) as the cumulative incidence of the outcome at 12 years,
where the latter is obtained by integrating a function of the event-specific hazards over the risk
period.14

Rare outcomes such as ovarian cancer present a second complication, because validation requires
assembling covariates and assigning model risks to large numbers of cohort members, which can be
costly when some of the covariates involve biospecimen analysis. For example, the ovarian cancer
risk model validation involves 40,139 CTS subjects who met the eligibility criteria, only 227 of whom
developed ovarian cancer. Here, we describe a cost-efficient two-stage sampling design that
oversamples those subjects most informative for estimating the outcome probabilities. In stage 1,
we obtain the information needed to classify all subjects into a few broad sampling categories as
determined by, say, their easily available covariates or their outcomes (positive, negative and
unknown). In stage 2 we randomly sample each category with a category-specific probability
chosen to yield good precision for a performance parameter of interest. We assemble the full set
of covariates (both easily available and costly), assign model risks, and analyze survival data only for
subjects sampled at stage 2. We then use these data to estimate the distribution of model-assigned
risks in the population from which the entire cohort was sampled, and the probability of developing
the outcome conditional on the assigned risks.

An important design question concerns the choice of sampling categories and sampling
probabilities when evaluating one or more risk models. In a seminal 1938 paper, Neyman defined
an optimal two-stage design as one that minimizes, for given total cost, the variance of a key
parameter of interest.17 This strategy can be illustrated with the following example. Suppose we
wish to compare a risk model based on readily available covariates (Model 1) to an expanded model
that includes costly additional biomarkers, such as genetic mutations conferring elevated ovarian
cancer risk (Model 2). Interest might focus on the additional sensitivity and specificity of Model 2 to
identify women at high risk, for screening purposes. If the budget allows biomarker assessment for
k< n of the n subjects, which subjects do we choose?

In some situations we can address this question by using easily available data on subjects’
covariates and outcomes to stratify them into sampling categories. For rare outcomes, for
example, choosing all of the outcome-positive subjects helps assess a model’s ability to
discriminate those who do and do not develop the outcome. We also can assign Model 1 risks to
all subjects and use these risks to classify the subjects into sampling categories for assessing the
costly covariates. In general however, selecting an optimal sampling partition and set of sampling
probabilities may require the very information we want to infer—namely the distribution of risks as
assigned using the costly covariates of Model 2. This catch-22, which is similar to that involved in
power calculations, can be addressed by using subjects’ available data to estimate their values for the
costly covariates, then assigning provisional Model 2 risks, classifying subjects into risk groups and
performing the calculations needed to approximate the optimal design. We illustrate this strategy by
applying it to the CTS data and we compare the performance of designs using covariate-based and
outcome-based sampling categories.

Section 2 begins with a brief review of nonparametric maximum-likelihood estimates (NPMLEs)
for event-specific absolute risks as applied to data from the complete cohort.14–16,18 Dinse and
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Larson19 have noted the advantages of expressing these estimates in terms of simple NPMLEs of the
event-specific hazards. We show that this approach has the additional advantage of easy extension
to yield simple weighted absolute risk estimates using a two-stage sampling design. We also provide
closed-form and bootstrap estimates of the variances of these estimates. In section 3, we use
simulations to examine the performance of two-stage designs chosen to minimize the variance of
either the estimated model bias B̂ or its AUC estimate. In section 4, we use data from the CTS to
illustrate the inferences and the choice of two-stage design. Section 5 concludes with a brief
discussion.

2 Methods

We wish to assess the accuracy and discrimination of a risk model using cohort data that is
independent of the data used for model development. When the covariates x needed by the
model are available for all subjects, we can use the model to assign a risk r¼ f(x) to each
subject, and then partition the cohort into L subgroups having similar risks. (In section 5 we
describe alternatives to such grouping of subjects.) Our goal is to estimate the parameter

� ¼ �,�ð Þ and the covariance matrix of the estimate, �̂ ¼ �̂, �̂ð Þ. Here � ¼ �1, . . . , �L�1ð Þ specifies

the subject’s multinomial group membership probabilities with �L ¼ 1�
PL�1

‘¼1 �‘, and

� ¼ �1, . . . ,�Lð Þ specifies the risk-group-specific outcome probabilities. The estimate �̂ then allows

assessment of model accuracy and discrimination. For example, accuracy can be assessed with the
bias statistic

B̂ ¼ B �̂
� �
¼

XL

‘¼1
�̂‘ �̂‘ � r‘ð Þ

2
h i1=2

ð1Þ

where r‘ is the mean assigned risk in group ‘, ‘ ¼ 1, . . . ,L: The null hypothesis B �ð Þ ¼ 0 (i.e. that the
model is well calibrated to the population risks) can be tested by referring the Hosmer–Lemeshow
statistic n p̂� rð Þ

T�̂�1 p̂� rð Þ to a chi-square distribution on L degrees of freedom.10 Here, �̂ is an
estimate of the covariance matrix of p̂ and r ¼ r1, . . . , rLð Þ with r‘ denoting the mean assigned risk in
group ‘, ‘ ¼ 1, . . . ,L: Model discrimination can be assessed via the concordance statistic11

dAUC ¼ dAUC �̂
� �
¼
XL

‘¼1

X
‘04 ‘

�̂‘�̂‘0
�̂‘0 1� �̂‘ð Þ

�̂ 1� �̂ð Þ
þ
1

2

XL

‘¼1
�̂2‘
�̂‘ 1� �̂‘ð Þ

�̂ 1� �̂ð Þ
ð2Þ

where �̂ ¼
PL

‘¼1 �̂‘�̂‘ is an estimate of the outcome prevalence in the population. Estimates for the
variances of these and other measures of model performance can be obtained from the estimated
covariance matrix of �̂ using a standard Taylor series expansion (the ‘delta method’).

2.1 Complete cohort sampling

Suppose we have used a risk model to assign to each of n subjects a probability of outcome
development during a future period ½0, t�Þ, and that we use these assigned risks to classify the
subjects into L risk groups. We observe the risk group and survival data T, "ð Þ of each subject,
where T is the time from risk assignment to the first of outcome occurrence, death, t� or last
observation, and " ¼ "1, "2ð Þ, where "1 and "2 are indicators for outcome occurrence and death,
respectively. Times to outcome or death are unobserved for censored subjects, who at time T5 t�
were last observed alive and outcome-free ð" ¼ 0, 0ð ÞÞ: Our goal is to use these data to estimate the
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risk-group-specific outcome probabilities �1, . . . ,�L, where �‘ ¼ Pr T5 t�, "1 ¼ 1½ � among subjects
in risk group ‘, ‘ ¼ 1, . . . ,L: In terms of competing risk theory, �‘ ¼ F‘1 t�ð Þ, where

F‘� tð Þ ¼

Z t

0

�‘� xð Þ exp �

Z x

0

�‘� uð Þ þ �‘� uð Þ½ �du

� �
dx ð3Þ

is the cumulative incidence function for an event of type �, � ¼ 1, 2, with �‘� �ð Þ denoting the event �
hazard in risk group ‘. It is straightforward to show that, conditional on the counts n‘ of subjects in
the L risk groups, the survival data within different risk groups are independent, and their
distribution does not depend on the vector � of multinomial group membership probabilities.
Therefore, the asymptotic covariance matrix � of the maximum-likelihood estimate �̂ is a block
diagonal, with blocks � and �, where � ¼ diag �ð Þ � ��T is the covariance matrix of the multinomial
estimate �̂ ¼ n�1 n1, . . . , nL�1ð Þ and � is the diagonal matrix whose diagonal entries are the
asymptotic variances of the �̂‘, ‘ ¼ 1, . . . ,L:

As the cumulative incidence function F‘� tð Þ of equation (3) is completely specified by the event-
specific hazard functions �‘�, � ¼ 1, 2, we can estimate the outcome probabilities �l by obtaining
NPMLEs of these hazards and using them in equation (3)18,19 (see also Kalbfleisch and Prentice,14

Section 8.23, p. 254). Specifically, let Ml denote the number of distinct event times in subgroup l,
with M ¼

PL
‘¼1 M‘: The risk-group- and event-specific hazard functions are replaced by the

2M-dimensional vector � ¼ �1, . . . , �Lð Þ, where

�‘ ¼ �‘11, �‘21, . . . , �‘1Ml
, �‘2M‘

� �
ð4Þ

is the 2M‘-dimensional vector of discrete hazards taking values at the M‘ distinct event times
05 t‘1 5 � � � 5 t‘M‘

5 t� among subjects in group ‘, ‘ ¼ 1, . . . ,L: We show in section 1 of the
Supplement that the NPMLE is ð�̂, �̂Þ with �̂ ¼ n�1 n1, . . . , nL�1ð Þ and �̂ ¼ ð�̂1, . . . , �̂LÞ, where �̂‘ is
given by equation (4) with �‘�m replaced by �̂‘�m ¼ d‘�m=n‘m,m ¼ 1, . . . ,M‘, ‘ ¼ 1, . . . ,L, � ¼ 1, 2:
Here n‘m and d‘�m are the counts of subjects in group ‘ who at time t‘m are at risk and fail of event �,
respectively. We now estimate � as �̂ ¼ �̂, �̂ð Þ, where �̂ ¼ �̂1, . . . , �̂Lð Þ with

�̂‘ ¼ ’‘ �̂‘l

� �
¼
XM‘

m¼1
�̂‘1m

Ym�1

m0¼1
1� �̂‘1m � �̂‘2m

� �
, ‘ ¼ 1, . . . ,L

and empty products equal one. In the absence of censoring, �̂l reduces to the simple binomial
proportion of subjects in group ‘ who develop the outcome during the risk period.

The large sample properties of the �̂‘ were derived by Gill20 using the theory of counting
processes and stochastic integrals (see the summaries in Chapter IV of Andersen et al.18 and
Chapter 5 of Kalbfleisch and Prentice14). Specifically,

ffiffiffi
n
p

�̂‘ � �‘ð Þ is asymptotically normally
distributed with mean 0 and variance �l given by a Taylor series expansion of �‘ ¼ ’‘ �‘ð Þ about
�‘ of equation (4), as described in section 1 of the Supplement. The resulting variance estimate, �̂‘

agrees with that of Dinse and Larson19 and Gaynor et al.21

2.2 Extension to two-stage sampling

The two-stage sampling design as applied to epidemiological data has been described elsewhere22,23

and we review it briefly in the context of risk model validation. In stage 1, we obtain enough easily
available covariate and outcome data to classify subjects into C sampling categories. In stage 2 we
independently sample subjects in category c with prespecified Bernoulli probability pc> 0,
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c¼ 1, . . . ,C. We then assemble all covariates (both inexpensive and costly), assign model risks, and
classify into risk groups only the subjects sampled at stage 2.

We use this design to obtain weighted estimates of the group membership probabilities �‘ and the
event-specific hazards �‘ of (4). As described for complete data, we then estimate � ¼ �,�ð Þ by
transforming these estimates to cumulative incidence estimates. Specifically, let Qc denote the set
of subjects in category c, and let �Qc denote the subset of subjects sampled in stage 2, with
p̂c ¼ �Qc

		 		= Qc

		 		, c ¼ 1, . . . ,C: The weighted estimate for (�, �) satisfies the Horvitz–Thompson
estimating equation

Pn
i¼1 aiui ¼ 0, where ui is the efficient score for the nonparametric likelihood

equation described in equation (S.3) of the Supplement, and the weight

ai ¼
XC

c¼1
p̂�1c I i 2 �Qc

� �
ð5Þ

is the inverse of the observed sampling probability for those sampled at stage 2 and 0 for other
subjects.14 (In this equation, I(E) is the indicator function, taking value 1 if event E occurs and zero
otherwise. It has been shown24,25 that it is asymptotically more efficient to use the observed sampling
probability p̂c rather than the chosen value pc.) In clear analogy with the complete sampling case, the
solution ð�̂, �̂Þ to this estimating equation has components �̂‘ ¼ ~n‘=n and �̂‘�m ¼ ~d‘�m= ~n‘m, where ~n‘
is the up-weighted count of subjects in group ‘, and ~n‘m and ~d‘�m are up-weighted counts of subjects
who at time tm are at risk and fail of type �, respectively. It is well known that the estimating
equation

Pn
i¼1 aiui ¼ 0 is unbiased; thus the estimate �̂ ¼ �̂, �̂ð Þ obtained by transforming ð�̂, �̂Þ is

consistent for �; moreover, the asymptotic covariance matrix �̂ can be estimated consistently as
described in section 1 of the Supplement. While general theory is lacking, empirical evidence and
results in special cases14,18,20,23 suggest that the usual asymptotic normality holds.

The asymptotic covariance matrix of the two-stage estimate �̂ may be unreliable when the number
L of risk groups is large and some of them are sparsely populated. This may be a particular problem
with two-stage sampling using small (<20%) second-stage sampling probabilities. In these
circumstances, bootstrap covariance estimates provide a practical alternative. Section 1.3 of the
Supplement contains specifications for a bootstrap estimate of the covariance matrix of the
weighted estimate �̂.

2.3 Choosing a two-stage design

An important question is how to choose a partition C of C sampling categories and corresponding
sampling probabilities p1, . . . , pC to minimize the variance of an estimate fð�̂Þ for some key
parameter. For example, fð�̂Þ might be the model’s bias statistic Bð�̂Þ of equation (1) or its
concordance statistic AUCð�̂Þ of equation (2). We show in the Supplement (section S.1.2) that the
variance of a statistic fð�̂Þ obtained from two-stage sampling is the sum of its variance under
complete sampling plus a penalty term P¼PðC, pÞ that depends on the parameter �, �ð Þ, the
partition C, and the vector p of sampling probabilities p1, . . . , pC. Therefore, minimizing the
variance of fð�̂Þ is equivalent to minimizing this penalty. To do so, we must:

(a) specify an approximate value for �, �ð Þ; (b) specify a set of one or more possible partitions C
and for each calculate the penalty PðC, pÞ as a function of the sampling probabilities p¼ p1, . . . , pC;
and (c) for each partition C, search in the unit cube of dimension C�1 for the sampling probabilities
p1, . . . , pC that minimize P, subject to a constraint on the total size of the stage 2 sample.

As noted by Neyman,17 specifying the parameter �, �ð Þ in step (a) presents a dilemma: if we knew
this parameter we would not need the study! This catch-22 is similar to the problem of designing a
study to maximize the probability of rejecting a null hypothesis about the mean of a distribution,
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when the optimal design depends on the value of the unknown mean. Such problems are typically
addressed by using external information and available data to approximate the parameters, which
are then used to select an approximately optimal design. For the current problem, the investigator
has access to the inexpensive covariates and survival data for all subjects sampled in stage 1; only
their costly covariates are unknown. Thus, all available relevant information can be used to impute
the subjects’ costly covariates. This imputation allows assignment of model risks, classification of
subjects into the L risk groups, and use of subjects’ survival data to specify an approximate value for
�, �ð Þ as needed for step (a). We illustrate this approach in the application to ovarian cancer in
section 4.

For step (b), we know of no formal scheme for choosing partitions likely to yield precise estimates
for any given target parameter f �ð Þ: As illustrated in sections 3 and 4, different target parameters can
require different types of partition. For rare outcomes, an intuitively good design is one that samples
all the outcome-positive subjects, but only a fraction of the outcome-negative ones, and an even
smaller fraction of the less informative outcome-unknown subjects. In other circumstances it may be
advantageous to oversample subjects whose available covariates suggest high outcome risk. After
determining the best sampling probabilities for each of several target parameters and each of several
partitions C, one can then select a partition with acceptably small variances for the parameters of
greatest interest.

Step (c) involves choosing sampling probabilities p1, . . . , pC to allow in stage 2 only a fraction k/n
of the n stage 1 subjects. Thus, we require

PC
c¼1 ŵcpc ¼ k=n, where ŵc is the proportion of stage 1

subjects in category c. For given values ŵc, this constraint implies that any C�1 sampling
probabilities determine the remaining one. So, finding the optimal probabilities for a partition C
involves searching within the (C�1)-dimensional unit cube using constrained minimization software.
In the following sections, we used Brent’s one-dimensional search26 for C¼ 2 and the simplex
method of Nelder and Meade27 for C¼ 3, both implemented with the R-routine constrOPTIM.

3 Numerical studies

We used simulations and constrained optimization to examine the performance of complete and
two-stage sampling for evaluating risk models. In the simulations we generated data for cohorts
sampled from two hypothetical populations. For Population 1 the outcome is rare (overall
prevalence of 1%), and for Population 2 it is more common (prevalence of 10%). We assumed
that potential times to outcome occurrence, death and censoring were independently and
exponentially distributed. The risk groups were determined by two covariates x1 and x2 taking
five discrete values: (x1, x2)¼ (1,1), (1,2), (1,3), (2,1), (2,2). Table 1 (panel A) gives the population
distribution across the five risk groups, and the corresponding outcome hazards. We assumed a
single competing mortality hazard �2 ¼ 0:01 for all individuals in both populations, and we took
the risk period to be the time interval from t ¼ 0 to t ¼ t� ¼ 1. The risk-group-specific outcome
probabilities shown in Table 1 (panel A) were determined from equation (3) as
�‘ ¼ F‘1 1ð Þ ¼ �‘1= �‘1 þ 0:01ð Þ½ � 1� e� �‘1þ0:01ð Þ


 �
, ‘ ¼ 1, . . . , 5:

3.1 Simulations

In each of the 1000 replications, we generated censored times to outcome development or death for a
cohort of size n¼ 30,000 (Population 1) or n¼ 3000 (Population 2). Times to censoring were
exponentially distributed with hazard �3 ¼ 0:30, independent of times to outcome and death.
Outcome-positive subjects were those who developed the outcome before the minimum of death,
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censoring, and risk period termination at time t� ¼ 1. The expected proportions of subjects positive,
negative, and unknown for outcome development during the period were, respectively, 0.9%,
73.5%, and 25.6% for Population 1; 8.8%, 66.8%, and 24.4% for Population 2.

Table 1 (panel B) shows the means across replications of the estimated outcome probabilities
and their theoretical standard deviations (TSDs) for complete and two-stage sampling. The TSDs
were obtained from the estimated covariance matrix of �̂ described in the Supplement. The two-stage
sampling included k/n¼ 1/5 of the stage 1 subjects sampled in stage 2. We chose an outcome-based
partition with C¼ 3 categories containing subjects whose outcomes were positive, negative,
and unknown, and a covariate-based partition with C¼ 2 categories containing subjects whose
values for the covariate x1 were x1¼ 1 and x1¼ 2 (the rationale for these partitions is described
in section 3.2). For each partition, the sampling probabilities were chosen to minimize the variance
of the concordance statistic, as described in section 2.3.

Comparison of the risk estimates in Table 1 (panel B) with their true values in Table 1 (panel A)
suggests that they are unbiased; moreover the TSDs agree well with the empirical standard
deviations (ESDs), i.e. the SDs of the �̂‘ across the 1000 replications. We also computed
bootstrap-based SD estimates for both complete and two-stage sampling and found that they
agreed well with both the TSDs and the ESDs (data not shown). As expected, the two-stage
estimates are less precise than those obtained from complete sampling. The precision loss is
relatively mild for the outcome-based partition, but more serious for the covariate-based
partition. These results do not differ strongly between the two populations, with one exception.
In Population 1 (rare outcome), the risk estimates from outcome-based sampling are more precise in
all risk groups, while in Population 2 (more common outcome), they are less precise than those of
covariate-based sampling in the highest two risk groups. This difference suggests that although
outcome-based sampling will generally perform well for rare outcomes (prevalence <10%), its
performance for more common outcomes is less predictable.

3.2 Constrained optimization

The simulations address how well the risk-group-specific outcome probabilities are estimated with
complete and two-stage sampling. However, summary performance measures such as model bias
and concordance involve not only the risk-group-specific outcome probabilities �‘, but also the risk-
group membership probabilities �‘, and there is need to evaluate the performance of two-stage
designs in estimating these measures. Our objective now is to examine and compare the optimal
sampling probabilities and corresponding true SDs of estimated performance measures across
different design choices and outcome prevalences when the model generating the data is known.
Accordingly, we used the populations and generating models of Table 1 (panel A) to obtain the
optimal sampling probabilities and calculate the corresponding true SDs for the bias and
concordance statistics, using the methods described in section 1.4 of the Supplement. In practice,
the true model is unknown and must be approximated using the covariate and survival data
available for stage 1 subjects, as we illustrate with CTS ovarian cancer data in section 4.

We consider the SD of bias and concordance statistics obtained from a cohort of size 30,000
sampled from Population 1 (outcome prevalence of 1%) and a cohort of size 3000 sampled from
Population 2 (outcome prevalence of 10%). We again consider the outcome- and covariate-based
partitions shown in Table 1 (panel B). We chose the outcome-based partition to investigate the
relative contribution to performance estimates of subjects with the three types of outcome. We chose
the covariate-based partition to investigate the circumstance when one covariate (x1) is available for
all cohort subjects but another (x2) must be ascertained. Table 1 (panel A) shows that subjects with
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x1¼ 2 comprise the highest two risk groups and only 10% of the population; therefore, we wanted to
determine the relative contribution of these subjects to precision measures.

Table 2 (panel A) shows the optimal two-stage sampling probabilities for these two partitions and
Table 2(panel B) shows the corresponding SDs of the bias statistic B̂ and concordance statistic dAUC.
For comparison, Table 2 (panel B) also includes the SDs corresponding to complete sampling. The
results in Table 2 (panel B) for the optimal outcome-based designs indicate that it is best to sample
all outcome-positive subjects for rare outcomes but not for more common ones. In the latter case,
however, the precision loss from sampling all outcome-positive subjects is not great – for example,
SDðB̂Þ increased from 0.016 to 0.017, an increase of 6%, and SDð dAUCÞ increased from 0.0256 to
0.0260, an increase of 1% (data not shown). As expected, outcome-negative subjects are sampled

Table 2. Two-stage designs, optimal sampling probabilities and corresponding SDs of bias and concordance

statistics.

Panel A: Two-stage sampling probabilities

C¼ 3 Outcome-based

categories

C¼ 2 Covariate-based

categories

Outcome

positive

Outcome

negative

Outcome

unknown x1¼ 1 x1¼ 2

Population 1, �¼ 1%, n¼ 30,000

Variance minimized a

varðB̂Þ 1.00 0.22 0.12 0.11 1.00

varðdAUCÞ 1.00 0.21 0.15 0.19 0.31

Population 2, �¼ 10%, n¼ 3000

Variance minimized

varðB̂Þ 0.52 0.18 0.13 0.11 1.00

varðdAUCÞ 0.82 0.15 0.12 0.19 0.30

Panel B: SD of bias ðB̂Þ and concordance ðdAUCÞ statistics

SDðB̂Þ SDðdAUCÞ

Population 1, �¼ 1%, B¼ 0.0034, AUC¼ 0.778

Complete sampling, n¼ 30,000 0.0014 0.016

Two-stage samplinga Variance minimized

Outcome-based categories varðB̂Þ 0.0015 0.021

varðdAUCÞ 0.0015 0.017

Covariate-based categories varðB̂Þ 0.0014 0.044

varðdAUCÞ 0.0025 0.036

Population 2, p¼ 10%, B¼ 0.0336, AUC¼ 0.805

Complete sampling, n¼ 3000 0.0087 0.016

Two-stage samplinga Variance minimized

Outcome-based categories varðB̂Þ 0.0160 0.035

varðdAUCÞ 0.0166 0.026

Covariate-based categories varðB̂Þ 0.0094 0.057

varðdAUCÞ 0.0159 0.035

Note: aWith 20% of stage 1 subjects sampled at stage 2.
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more heavily than censored ones, but the optimal sampling ratio depends on outcome prevalence. In
contrast, results for the two covariate-based designs do not vary strongly with outcome prevalence.
Comparison across the outcome-based and covariate-based partitions shows that the former gives
more precise estimates of both performance measures for rare outcomes, but not for more common
ones. Specifically, when outcome prevalence is 10%, model bias is estimated more precisely by the
best covariate-based partition, which oversamples subjects with x1¼ 2, that is, subjects in the
sparsely populated highest two risk groups.

We conclude this section with two observations about complete sampling. First, as shown in
Table 2 (panel B), the SD of the concordance statistic is the same for a cohort from Population 1 of
size 30,000 and a cohort from Population 2 of 3000. This suggests that the precision of this statistic
depends more on the number of outcome-positive subjects (which is roughly 270 for both types of
cohort) than on the total number of subjects. Second, as expected, other simulations (data not
shown) revealed severe upward bias for outcome probability estimates obtained by excluding
censored subjects and performing a standard binomial-based analysis only on the remaining
outcome-positive and outcome-negative subjects.

4 Example

We illustrate the complete and two-stage sampling methods by using them to assess the performance
of ovarian cancer risk models applied to subjects in the CTS described in section 1. We first assess
the accuracy and discrimination of a nongenetic model (Model 1) in the entire cohort, and we use
this complete data assessment as the gold standard for results using the two-stage design. We then
show how available covariates, outcome data, and Model 1 risks can be used to find two-stage
designs that minimize the variance of estimated gains in sensitivity and specificity associated with an
expanded model (Model 2) involving additional costly genetic covariates.

4.1 CTS cohort subjects

Among all 133,429 subjects, n¼ 40,139 met the eligibility criteria described in section 3 of the
Supplement and comprise the cohort. We used the nongenetic risk model described in the
Supplement (hereafter called Model 1) to assign each subject a 12-year ovarian cancer risk. We
took the follow-up time for each subject to be the number of days between cohort entry and the first
occurrence of ovarian cancer diagnosis, death, last observation, or 12 years of follow-up. Among
eligible subjects, 227 (0.6%) developed invasive epithelial ovarian cancer within 12 years of cohort
entry (outcome-positive subjects) and 26,887 (67%) died from other causes or survived the period
without ovarian cancer (outcome-negative subjects). An additional 13,025 subjects (32%) were alive
and free of ovarian cancer at last observation, but had not accrued the full 12 years of follow-up.
These subjects were classified as outcome unknown. Since most of them were observed for at least
10 years of the 12-year follow-up period, their inclusion in the analysis substantially reduces the
estimated outcome probabilities.

4.2 Assessment of Model 1

Figure 1 shows two plots of points �r‘, �̂‘ð Þ corresponding to L¼ 5 estimated quintiles of Model 1
risk. Here �r‘ is the mean assigned risk and �̂‘ is the estimated outcome probability among subjects
in quintile ‘, ‘¼ 1, . . . , 5: The points in the upper panel (Figure 1A) were estimated from the
complete sample of all n¼ 40,139 subjects, and those in the lower panel (Figure 1B) from two-
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stage sampling with C¼ 2 sampling categories: (1) all 227 ovarian cancer cases, sampled with
probability p1¼ 1, and (2) all other subjects, sampled with probability p2¼ 0.1. As evident in the
figure, the two designs yield nearly identical estimates for the outcome probabilities and their SDs.
We also found good agreement between the theoretical and bootstrap SD estimates (data not
shown). There was evidence of model bias (Hosmer–Lemeshow statistic �25¼ 11.7 (P¼ 0.04) for
complete sampling and �25¼ 14.8 (P¼ 0.01) for the two-stage sampling). Model discrimination
was poor: the estimated AUCs were 0.59 (0.55–0.62) and 0.58 (0.54–0.62) for complete and two-
stage sampling, respectively. The poor discrimination reinforces other observations28 that existing
markers for increased ovarian cancer risk cannot adequately discriminate those who will develop the
disease from those who will not.

4.3 Choice of two-stage design for assessing an expanded model

Model 1 involves only existing CTS covariates and not costly biospecimen analysis. Of clinical
interest is the discrimination gained from an expanded model that also includes genotypes for
ovarian cancer susceptibility alleles. However, cost issues prevent genotyping the entire cohort
and a two-stage design is needed. Here, we illustrate how the available covariates and survival
data of the 40,139 stage 1 subjects, together with external information, can be used to partition
these subjects into sampling categories and select sampling probabilities that minimize the variance
of a parameter estimate of interest. For example, we have seen that the discrimination of Model 1 is
poor, and we may want to estimate the improvement gained by augmenting Model 1 with subjects’
carrier statuses for rare pathogenic mutations of the breast/ovarian cancer susceptibility genes
BRCA1 and BRCA2 in an expanded Model 2, such as the one described in the Supplement.
Moreover, suppose budgetary constraints limit the genetic testing to 7000 of the 40,139 subjects.
The question is: how to choose sampling categories and stage 2 sampling probabilities to estimate
the discriminatory gain for Model 2, using the 7000 stage 2 subjects who are genotyped and assigned
risks according to both models?

We address this question by determining two-stage designs that minimize the variances of
estimates for the gains in sensitivity and specificity associated with Model 2. We took a model’s
sensitivity to be the probability that it designates an outcome-positive subject as high risk (12-year
risk �3%), and its specificity to be the probability that it designates an outcome-negative subject as
low risk (12-year risk <3%). We then classified the women in L¼ 4 risk groups indexed as j,k,
j¼ 1,2, k¼ 1,2, as determined by their risk statuses (1¼ low risk, 2¼high risk) according to Models
1 and 2, respectively. The Supplement contains expressions for the sensitivity and specificity gains
for Model 2, as functions of � ¼ �,�ð Þ, with � ¼ �11, �12, �21ð Þ and � ¼ �11,�12,�21,�22ð Þ:

As noted in section 2.3, finding an optimal design involves three steps: (a) choosing an
approximate value for �; (b) choosing partition(s) C and calculating for each the penalty term
PðC, pÞ of equation (S.11) as a function of p; and (c) searching for the sampling probabilities p
that minimize P. To accomplish step (a), we used each stage 1 subject’s available covariates to
impute her BRCA1 and BRCA2 carrier statuses. Specifically, we used her personal and family
cancer history in the software BRCAPRO29 to assign her probabilities of carrying a mutation of
BRCA1 and BRCA2, and then used these probabilities to randomly assign her a carrier status for
each gene. We then used her BRCA1 and BRCA2 carrier statuses and available covariates to assign
her a Model 2 risk and, coupled with her Model 1 risk, classified her in one of the four risk groups.
Table 3 shows the ovarian cancer risk distribution resulting from this classification. The table also
shows the approximate outcome probabilities �jk obtained from the event-specific survival data of
the stage 1 subjects in each risk group. These results provided approximate parameter values for
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step (a). For these parameters, Model 1 sensitivity and specificity were, respectively, 2.2% and
98.5%, with corresponding values for Model 2 of 8.4% and 98.6%. These values give a
sensitivity gain of 6.2% and a small specificity gain of 0.1% for Model 2 compared with Model 1.

In step (b) we selected two partitions. The first is outcome-based with C¼ 3 sampling categories
(positive, negative, and unknown ovarian cancer status). The second is based on both outcome and
nongenetic covariates, with C¼ 3 categories: outcome-positive, other subjects in the highest Model 1
risk quintile, and all other subjects. For each of these two partitions and each of the two target
measures (sensitivity gain and specificity gain), we determined the penalty P as a function of the
sampling probabilities p, as described in section 1.3 of the Supplement. In step (c) we determined the
sampling probabilities that minimize P.

Table 4 shows the optimal sampling probabilities and corresponding SDs for each target measure
and each partition. These results illustrate several points. First, the two partitions differ little in their
optimal performances, with a slight edge for the second partition compared with the first. Second,
regardless of the partition chosen, the designs optimal for sensitivity gain include all outcome-
positive subjects, while the ones optimal for specificity gain include only 6–7% of these subjects.
Thus, even for outcomes of low prevalence, some parameters may be estimated more efficiently by
sampling only a fraction of the outcome-positive subjects. However, because we typically want
precise estimates for gains in both sensitivity and specificity, and for rare outcomes the SDs of
sensitivity gain estimates substantially exceed the SDs of specificity gain estimates, the designs
that optimize sensitivity at the expense of slight suboptimality for specificity will tend to
dominate design decisions.

5 Discussion

We have used cohort data to evaluate the accuracy and discrimination of personal risk models in the
presence of censoring due to incomplete follow-up. In so doing, we have adopted the common
practice of classifying subjects into discrete groups determined by assigned risk, and estimating
the actual outcome probabilities within these groups. Such discretization facilitates assessment of
model accuracy using the bias statistic and analogous Hosmer–Lemeshow chi-squared test statistic.
Moreover, using quintiles of assigned risk as the risk groups avoids groups with too few subjects for
adequate assessment. However, these advantages are offset by the costs of clumping individual risks
into broad groups, with consequent loss of sharpness in model assessment. Alternatives to the
quintile approach based on nearest-neighbor methods have been proposed,30,31 but their
properties need further evaluation in simulations and data. In the absence of censoring, the

Table 3. Distribution of 40,139 CTS subjects according to ovarian cancer risks assigned by Models 1 and 2.

Model 2 risk a

Low (<3%) High (�3%) Total

Model 1 riska n�̂ �̂a
SD n�̂ �̂ SD n�̂ �̂ SD

Low (<3%) 39,475 0.6 0.04 74 22.6 5.15 39,549 0.6 0.04

High (�3%) 94 1.2 1.18 496 0.8 0.42 590 0.9 0.40

Total 39,569 0.6 0.04 570 3.6 0.81 40,139 0.6 0.04

CTS: California Teachers Study.

Note: aProbability of developing ovarian cancer within 12 years of baseline, multiplied by 100.
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maximum-likelihood estimates of the discrete outcome probabilities are simple binomial proportions
of subjects who develop the outcome during the risk period. With censoring, however, this approach
leads to biased risk estimates, because it fails to account for all subjects’ times at risk, and competing
risk analysis is needed. For this, Dinse and Larson19 argue against direct estimation of the desired
outcome probabilities, but instead recommend estimating the event-specific hazards and converting
these hazard estimates to outcome probability estimates.

We have proposed a two-stage sampling design for using cohort data to assess the performances
of externally derived risk models in circumstances when assigning risks to all subjects is infeasible.
We also describe methods for using the resulting data to efficiently estimate relevant performance
parameters. When the sampling categories are based on subjects’ outcomes, the two-stage design is
similar in spirit to the case–cohort design of Prentice32 for regression analysis of survival data under
a Cox proportional hazards model. If used to evaluate risk models, the case–cohort design would
assign risks to all outcome-positive subjects and to a randomly selected subset of the entire cohort.
This design yields outcome probability estimates identical to those of the two-stage design with
sampling categories consisting of: (a) outcome-positive subjects; and (b) all other subjects. However,
the variances of the two estimates differ, because those from the case–cohort design must
accommodate any overlap between the sampled subcohort and the set of outcome-positive
subjects. Moreover, the two-stage design is more flexible for evaluating risk models as it allows
stage 2 sampling from an arbitrary partition of subjects into sampling categories.

We have provided consistent estimates for the theoretical covariance matrices of the weighted
estimates, and we have proposed corresponding bootstrap covariance estimates. General asymptotic
theory is lacking but the empirical evidence suggests that the usual normality results hold.

Table 4. Optimal sampling probabilities and standard deviations of estimated gains in sensitivity and specificity from

expanding an ovarian cancer model with genetic covariates.

Panel A: Optimal sampling probabilities

Outcome-based categories Outcome/risk-based categories

Variance

minimized Positive Negative Unknown

Outcome

positive

Others, Model 1

quintile 5

Others, Model 1

quintiles 1–4

varð�̂SNÞ 1.00 0.22 0.14 1.00 0.24 0.15

varð�̂SPÞ 0.06 0.19 0.15 0.06 0.41 0.12

Panel B: Standard deviations of estimated performance gains for Model 2

SDð�̂SNÞ SDð�̂SPÞ

Complete sampling 0.0170 0.0034

Two-stage sampling Variance minimized

Outcome-based categories varð�̂SNÞ 0.0177 0.0077

varð�̂SPÞ 0.0700 0.0072

Outcome/risk-based categories varð�̂SNÞ 0.0177 0.0066

varð�̂SPÞ 0.0638 0.0060

SD: standard deviation; �̂SN : estimated gains in sensitivity; �̂SP : estimated gains in specificity.
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The proposed theoretical and bootstrap dispersion estimates both agreed well with the empirical
ones used as the gold standard. The simulations, numerical calculations, and application to data
from the CTS illustrate several points. First, determining optimal design choices requires estimating
performance gains associated with the costly covariates, which are unobserved at completion of the
first sampling stage. Thus, one needs reasonable estimates of the subjects’ values for these covariates,
and the relative optimality of different design choices depends on the accuracy of these estimates.
Second, the design with optimal efficiency for one parameter need not be so for other parameters of
interest, and trade-offs will be required. For example, optimal precision for some parameter
estimates may require sampling only a fraction of outcome-positive subjects, even with
uncommon outcomes. As a general rule, however, sampling all outcome-positive subjects and
more outcome-negative than censored subjects can be expected to perform reasonably well in
most circumstances.

An R program entitled ‘Risk Model Assessment Program (RMAP)’, which provides estimates for
outcome probabilities, the associated covariance matrices and graphical examination of model
performance, is freely available at <http://www.stanford.edu/ggong/rmap/index.html>.
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