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1 Grouped Analysis

1.1 The problem

Assume that, during the time interval [0, t∗), a person can be diagnosed with a specific disease or die from other
causes. Assume also that we have in hand a model that can calculate a probability of the person being diagnosed
with the disease before dying from other causes and before time t∗. We want to validate this model.

1.2 Notation dictionary

The notation used here is different slightly from that used in Two-stage Sampling Designs for Validating Personal
Risk Models by Whittemore and Halpern, which has been submitted to Biostatistics in 2010.

WH rmap to jog your memory
l k risKgroup
L K total number of risKgroups
τ e Event

θ (γ, π)
θ (γ, λ)
i n subject iNdex
N N total number of subjects
tlm τkm ordered event times in the kth risK group
Xli(tlm) Nkn(τkm) = Nkmn indicates whether kn person is at risk at time

τkm
Dken(τkm) = Dkemn indicates whether kn person had event e at

time τkm
nlm =

∑
i aiXli(tlm) Nkm =

∑
n anNkn(τkm) Number in risK group k at risk at time τkm

dlτm =
∑

i aiXli(tlm)Nlτ i(tlm) Dkem =
∑

n anNkmnDken(τkm) Number in risK group k who has event e at
time τkm
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1.3 Two-stage sampling

We will allow for the possibility that the people in the study are sampled according to two-stage sampling, and so
we provide this tiny interlude.

1.3.1 Simple random sampling

For comparison, we begin this discussion with simple random sampling. Let {xn}n=1,...N be a random sample from
a population governed by the density f(x, θ). Introduce the notation

logliken = log(f(xn, θ)) (1)

un =
∂logliken

∂θ
(2)

In = −∂un
∂θ

(3)

U(θ) =
N∑
n=1

un (4)

A =
1

N

N∑
n=1

In (5)

V = A−1 (6)

The MLE θ̂ is the solution to U(θ) = 0; the asymptotic distribution of
√
N(θ̂ − θ) is Normal with zero mean and

variance V , and θ̂ has covariance matrix 1
N V .

1.3.2 Back to two-stage sampling

We use two-stage sampling with bernoulli second stage sampling. In the first stage, screen N subjects; S =
{xn}n=1,...N are the subjects in the first stage. Let Sc be those screened patients falling in the cth category,
Qc = {n|xn ∈ Sc} be their subscripts, and Nc = |Qc| denote the number of people in the first stage who land in
category c. (Interpret the term “screen” to mean get enough information on the nth subject to know what category
c she falls in.) In the second stage, test each person in Sc with probability pc, and let S̄c denote those people tested,
Qc denote their subscripts, and N c = |Qc| denote the number of people who fall in category c and are tested.
(Interpret the term “test” to mean get all the information on the nth subject.) The sets {S̄c}c=1,...C contain all the
observations we can get are hands on, the ones that make it into the data set we are going to analyze.
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Define un and In as in simple random sampling, and

ω̂c =
Nc

N
(7)

p̂c =
N̄c

Nc
(8)

an =
∑
c

1

p̂c
1(n ∈ Q̄c) (9)

U(θ) =
N∑
n=1

anun (10)

A =
1

N

N∑
n=1

anIn (11)

B1 =
1

N

N∑
n=1

anunu
T
n (12)

V = A−1 or B−1
1 (13)

µ̂c =
1

N̄c

∑
n∈Q̄c

un (14)

Φ̂c =
1

N̄c

∑
n∈Q̄c

unu
T
n (15)

B2 =
∑
c

ω̂c
1− p̂c
p̂c

(Φ̂c − µ̂cµ̂Tc ) (16)

V2Stage = V + V B2V (17)

The solution θ̃ to U(θ) = 0 we call the Horvitz-Thompson estimate. Notice that the Horvitz-Thompson estimate
maximizes the PSEUDO likelihood equation

∑
n anlogliken. We have

√
N(θ̃ − θ) is Normal with zero mean and

variance V2Stage, and θ̃ has covariance matrix 1
NV2Stage.

1.4 The data

For each person xn, we record

Variable Description Range
en event type 0 = censored, 1= disease, 2 = death from

other causes
tn time of event [0, t∗)
rn probability of disease as predicted by the model (0, 1)
kn risKgroup as defined by rn 1, ...,K
cn two stage Category 1, ..., C
zn covariates used to calculate rn (optional)

The number of riskgroups K is chosen in advance by the user, and typically the riskgroups are defined by which
K-tile each person’s predicted probability rn falls in.

The rmap package contains functions df_randomSample and df_twoStage, which randomly generate a sample
dataset. This dataset is a data.frame with columns e, t, r, k, and c. Each row represents one subject.
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1.5 Goals

Let λke(t) be the hazard for event type e of people in riskgroup k. The probability of disease in the interval [0, t∗)
is πk

πk =

∫ t∗

0
λk1(t)Sk1(t)Sk2(t)dt (18)

Ske = e−Λke(t) (19)

Λke(t) =

∫ t

0
λke(s)ds (20)

We have the following goals for which we must derive appropriate formulas:

1. Estimate πk

2. Obtain the estimated covariance matrix Σ = ĉov(γ̂1, ..., γ̂K−1, π̂1, ..., π̂K)

3. Calculate the Hosmer-Lemeshow Chi-squared goodness of fit statistic

4. Calculate the AUC and its estimated variance

5. Calculate SD, the standard deviation of the model and its estimated variance

1.6 The likelihood

For the nth person, we observe the data xn = (εn, tn, kn). We take her contribution to the likelihood to be

f(xn) = P (kn)× P (εn, tn|kn) (21)

=

K∏
k=1

(
P (kn = k)kn=k × P (εn, tn|kn = k)

)
(22)

The first term of equation (21) we take to be a multinomial probability P (kn = k) = γk, where
∑K

k=1 γk = 1.

The second term P (εn, tn|kn = k) will be conditional on the failure times of riskgroup k. The failure times are
times in which a subject either gets disease or dies. Order these failure times and denote them like this:

0 < τk1 < ... < τkm < ... < τkMk
≤ t∗ (23)

m ∈ {1, ...,Mk} indexes these unique failure times for one risk group.

Define

λkem = λke(τkm) (24)
λk = ((λk11, · · · , λk1m, · · · , λk1M ), (λk21, · · · , λk2m, · · · , λk2M )) (25)
λ = (λ1, ...λk, ...λK) (26)

λk•m = λk1m + λk2m (27)

L = 2

K∑
k=1

Mk (28)
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We call λ the vector of discrete hazards and L is the number of elements in λ. This is how we think about the
second term P (εn, tn|kn = k). Suppose tn falls inside [τk,m(n), τk,m(n)+1) for some m(n) = 1, · · · ,Mk. We assume
that the only times when she can have an event is at times τk1, · · · , τk,m(n). We say she is at risk during these
times. At time τkm, the probability that she will have event e = 1 is λk1m, have event e = 2 is λk2m, and the
probability that she will have neither is 1 − λk•m In other words, at each failure time for which this person is at
risk, she has a multinomial probability for the three outcomes, e = 0, 1 or 2. Define

Nkmn = Nkn(τkm) = 1(kn == k and tn ≥ τkm) (29)
Dkemn = Dken(τkm) = 1(kn == k and en == e and tn ≤ τkm) (30)
Dk•mn = Dk1mn +Dk2mn (31)

Nkmn indicates whether or not the nth person is at risk at time τkm, and Dkemn indicates whether or not the nth
person had event e at time τkm. Now we can write the second term

P (εn, tn|kn = k) =

Mk∏
m=1

λNkmnDk1mn
k1m λNkmnDk2mn

k2m (1− λk•m)Nkmn(1−Dk•mn) (32)

Putting together the first and second terms and then taking the log, the nth person’s contribution to the loglikeli-
hood is

logliken(γ, λ) =

K∑
k=1

1(kn = k)log(γk)

+
K∑
k=1

Mk∑
m=1

Nkmn

(
Dk1mnlog(λk1m) +Dk2mnlog(λk2m) + (1−Dk•mn)log(1− λk•m)

)
(33)

The first term is the first term in the equation that precedes (5) of Whittemore and Halpern 2010, and the second
term is (10) in Whittemore and Halpern 2010.

1.7 un and V

1.7.1 un(γ) and V (γ)

We continue following the roadmap presented in equations (1) to (17). Here we get the partial derivatives of the a
person’s contribution to the loglikelihood with respect to γ.

un(γk) =
∂logliken
∂γk

=
1(kn = k)

γk
− 1(kn = K)

1− (γ1 + · · ·+ γK−1)
(34)

In(γk, γk) = −∂un(γk)

∂γk
=

1(kn = k)

γ2
k

+
1(kn = K)(

1− (γ1 + · · ·+ γK−1)
)2 (35)

In(γk, γk′) = −∂un(γk)

∂γk′
=

1(kn = K)(
1− (γ1 + · · ·+ γK−1)

)2 , if k 6= k′ (36)

and we then sum over
∑N

n=1 an:
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U(γk) =

N∑
n=1

anun(γk) (37)

=

∑N
n=1 an1(kn = k)

γk
−

∑N
n=1 an1(kn = K)

1− (γ1 + · · ·+ γK−1)
(38)

=
Nk

γk
− NK

1− (γ1 + · · ·+ γK−1)
(39)

Nk =

N∑
n=1

an1(kn = k) (40)

N∑
n=1

anIn(γk, γk) =

∑N
n=1 an1(kn = k)

γ2
k

+

∑N
n=1 an1(kn = K)(

1− (γ1 + · · ·+ γK−1)
)2 (41)

=
Nk

γ2
k

+
NK

γ2
K

(42)

N∑
n=1

anIn(γk, γk′) =

∑N
n=1 an1(kn = K)(

1− (γ1 + · · ·+ γK−1)
)2 (43)

=
NK

γ2
K

(44)

and solving U(γ̃k) = 0 gives

γ̃k = Nk/N (45)

N =
K∑
k=1

Nk (46)

Substituting γ̃k into equations (42) and (44) gives:

NA(γk, γk) =
N

γ̃k
+
N

γ̃K
(47)

NA(γk, γk′) =
N

γ̃K
(48)

γ̃K = 1− (γ̃1 + · · ·+ γ̃K−1) (49)

Using Mathematica we get

V (γ) = A−1(γ) (50)

=
1

N
×

( γ1 0
. . .

0 γK−1

−
 γ1

...
γK−1

( γ1 · · · γK−1

))
(51)

which matches (2) of Whittemore and Halpern 2010.
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1.7.2 un(λ) and V (λ)

Next, get the partial derivatives of a person’s contribution to the loglikelihood with respect to λ.

un(λkem) =
∂logliken
∂λkem

= Nkmn

(
Dkemn

λkem
− 1−Dk•mn

1− λk•m

)
(52)

In(λk1m, λk1m) = −∂un(λk1m)

∂λk1m
= Nkmn

(
Dk1mn

λ2
k1m

+
1−Dk•mn
(1− λk•m)2

)
(53)

In(λk1m, λk2m) = −∂un(λk1m)

∂λk2m
= Nkmn

(
1−Dk•mn
(1− λk•m)2

)
(54)

In(λk2m, λk2m) = −∂un(λk2m)

∂λk2m
= Nkmn

(
Dk2mn

λ2
k2m

+
1−Dk•mn
(1− λk•m)2

)
(55)

The first equation in the above display checks with (16) of Whittemore and Halpern. Next, sum over
∑N

n=1 an:
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U(λkem) =

N∑
n=1

anNkmn

(
Dkemn

λkem
− 1−Dk•mn

1− λk•m

)
(56)

=

∑N
n=1 anNkmnDkemn

λkem
−
∑N

n=1 anNkmn −
∑N

n=1 anNkmnDk•mn
1− λk•m

(57)

=
Dkem

λkem
− Nkm −Dk•m

1− λk•m
(58)

Dkem =
N∑
n=1

anNkmnDkemn (59)

Dk•m =
N∑
n=1

anNkmnDk•mn) (60)

Nkm =
N∑
n=1

anNkmn (61)

N∑
n=1

anIn(λk1m, λk1m) =

N∑
n=1

anNkmn

(
Dk1mn

λ2
k1m

+
1−Dk•mn
(1− λk•m)2

)
(62)

N∑
n=1

anIn(λk1m, λk2m) =

N∑
n=1

anNkmn

(
1−Dk•mn
(1− λk•m)2

)
(63)

N∑
n=1

anIn(λk2m, λk2m) =

N∑
n=1

anNkmn

(
Dk2mn

λ2
k2m

+
1−Dk•mn
(1− λk•m)2

)
(64)

N∑
n=1

anIn(λkem, λkem) =

∑N
n=1 anNkmnDkemn

λ2
k1m

+

∑N
n=1 anNkmn −

∑N
n=1 anNkmnDk•mn

(1− λk•m)2
(65)

=
Dkem

λ2
kem

+
Nkm −Dk•m
(1− λk•m)2

(66)

= Nkm

(
Dkem/Nkm

λ2
kem

+
(Nkm −Dk•m)/Nkm

(1− λk•m)2

)
(67)

and solving 0 = U(λ) gives

λ̃kem =
Dkem

Nkm
(68)

Since λk1m and λk2m both appear in the equations for 0 = U(λk1m) and 0 = U(λk2m), we need to consider this
system of two equations and two unknowns. Simple substitution of λ̃k1m and λ̃k2m into these equations show that
they are the required solutions. Substituting λ̃kem into appropriate sum over

∑N
n=1 an equations,
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N∑
n=1

anIn(λ̃kem, λ̃kem) = Nkm

(
λ̃kem

λ̃2
kem

+
1− λ̃k•m

(1− λ̃k•m)2

)
(69)

=
Nkm

λ̃kem
+

Nkm

1− λ̃k•m
(70)

N∑
n=1

anIn(λ̃k1m, λ̃k2m) =
Nkm

1− λ̃k•m
(71)

We can build a two-by-two matrix using equations (70) and (71). Setting e = 1 or e = 2 in equation (70) fills the
diagonal elements of the matrix, and equation (71) fills the off-diagonal elements.

(NA)km =
Nkm

λ̃k1mλ̃k2m(1− λ̃k1m − λ̃k2m)

(
λ̃k2m(1− λ̃k2m) λ̃k1mλ̃k2m

λ̃k1mλ̃k2m λ̃k1m(1− λ̃k1m)

)
(72)

We can put the matrix into Mathematica and get

(NA)−1
km =

1

Nkm

(
λ̃k1m(1− λ̃k1m) −λ̃k1mλ̃k2m

−λ̃k1mλ̃k2m λ̃k2m(1− λ̃k2m)

)
(73)

Vkm = A−1
km =

N

Nkm

(
λ̃k1m(1− λ̃k1m) −λ̃k1mλ̃k2m

−λ̃k1mλ̃k2m λ̃k2m(1− λ̃k2m)

)
(74)

This checks with (13) of Whittemore and Halpern 2010. The implied order for Vkm defined in equation (74) is
different than the order we see in the rmap package. Equation (75) better accommodates the order of the data
structure in the rmap package.

Vk,e1,e2,m =

{
λke1m(1− λke1m) if e1 = e2

λk1mλk2m if e1 6= e2
(75)

1.7.3 un and V

Write

θ =

(
γ
λ

)
(76)

un =

(
un(γ)
un(λ)

)
(77)

where un(γ) is theK−1 dimensional vector of derivatives with respect to γ1, · · · γK−1 and un(λ) is the L dimensional
vector of derivatives with respect to all the components of λ. Remember that λ = (λ1, ..., λk, ..., λK), where
λk = ((λk11, · · · , λk1m, · · · , λk1M ), (λk21, · · · , λk2m, · · · , λk2M )). Also remember that L = 2

∑K
k=1Mk. Also write
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A =

(
A(γ) 0

0 A(λ)

)
(78)

V = A−1 =

(
V (γ) 0

0 V (λ)

)
(79)

Two-stage sample theory says θ̃ has covariance matrix V2Stage.

V2Stage = V + V B2 V (80)

µ̂c =
1

N̄c

∑
n∈Q̄c

un (81)

Φ̂c =
1

N̄c

∑
n∈Q̄c

unu
T
n (82)

B2 =
∑
c

ω̂c
1− p̂c
p̂c

N̄c

N̄c − 1
(Φ̂c − µ̂cµ̂Tc ) (83)

In the rmap package, B2Fn divides the calculation of equation (83) into two parts: PhiHatPart and muHatPart. To
follow the logic of the rmap it is useful to write B2 as follows:

B2 =
∑
c

ω̂c
1− p̂c
p̂c

N̄c

N̄c − 1
Φ̂c −

∑
c

ω̂c
1− p̂c
p̂c

N̄c

N̄c − 1
µ̂cµ̂

T
c (84)

The first term of equation (84) is calculated as PhiHatPart, and the second term is calculated as muHatPart.

1.8 The delta method

Suppose X is an I-dimensional random vector with distribution

X ∼ Normal(µ,Σ) (85)

(Therefore µ is also an I dimensional vector and Σ is an I × I dimensional matrix.) Define the J dimensional
random vector Y = f(X). To make things very explicit write Y1

...
YJ

 =

 f1(X1, · · · , XI)
...
fJ(X1, · · · , XI)

 (86)

Then

Y ∼ Normal(f(µ),∆TΣ∆) (87)

where
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∆T
ji =

∂fj
∂µi

(88)

Again to make things really explicit we can write out the covariance of Y like this:

cov(Y ) =


∂f1
∂µ1

· · · ∂f1
∂µI

...
...

∂fJ
∂µ1

· · · ∂fJ
∂µI


 σ11 · · · σ1I

...
...

σII · · · σII




∂f1
∂µ1

· · · ∂fJ
∂µ1

...
...

∂f1
∂µI

· · · ∂fJ
∂µI

 (89)

1.9 The HT estimate ξ̃T = (γ̃, π̃)T

Apply the delta method to X = θ̃, Y = ξ̃ =

(
γ̃
π̃

)
, µ = θ, and ξ =

(
γ
π

)
= f(µ) = f

(
γ
λ

)
=

(
γ
g(λ)

)
where

π̃k = gk(λ̃k) =

Mk∑
m=1

λ̃k1m

m−1∏
m′=1

(1− λ̃k•m′) (90)

From the fact that θ̃ ∼ Normal(θ, V2StageN ) and from the delta method, we get

ξ̃ =

(
γ̃
π̃

)
∼ Normal(

(
γ̃
π̃

)
,

Σ

N
) (91)

where

D =

(
IK−1 0

0 D(λ)

)
(92)

D(λ) =


∂g1
∂λ1

· · · ∂gJ
∂λ1

...
...

∂g1
∂λL

· · · ∂gJ
∂λL

 (93)

Σ = DT V2Stage D (94)

The derivatives can be gotten in closed form. From equations (95) to (102) we drop the subscript k and the ˜ from
the notation so Equation (90) becomes

π = g(λ) =
M∑
m=1

λ1m

m−1∏
m′=1

(1− λ•m′) (95)

λ•m = λ1m + λ2m (96)

We are going to write out the gory details for M = 5. Here is a list of all the elemnts inside λ. Remember that we
are dropping the subscipt k.
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λ =

 m = 1 m = 2 m = 3 m = 4 m = 5
e = 1 λ11 λ12 λ13 λ14 λ15

e = 2 λ21 λ22 λ23 λ24 λ25

 (97)

Now we can write out π

π = λ11

+ λ12(1− λ•1)

+ λ13(1− λ•,1)(1− λ•2)

+ λ14(1− λ•1)(1− λ•2)(1− λ•3)

+ λ15(1− λ•1)(1− λ•2)(1− λ•3)(1− λ•4) (98)

Now think about taking the partial derivatives ∂π
∂λ13

and ∂π
∂λ23

. Notice that in the equation for π, λ13 shows up only in
the terms that begins λ13, λ14, λ15, and exactly one time in each term. Also, π, λ23 shows up only in the terms that
begin with λ14, λ15, and again exactly one time in each term. And one more thing, ∂(1−λ•3)

∂λ13
= ∂(1−λ13−λ23)

∂λ13
= −1

and ∂(1−λ•3)
∂λ23

= −1. Now it is time to take derivatives.

∂π

∂λ13
= (1− λ•1)(1− λ•2)

− λ14(1− λ•1)(1− λ•2)

− λ15(1− λ•1)(1− λ•2)(1− λ•4) (99)
∂π

∂λ23
= −λ14(1− λ•1)(1− λ•2)

− λ15(1− λ•1)(1− λ•2)(1− λ•4) (100)

And we see that in general,

∂π

∂λ2m
= −

M∑
m′′=m+1

λ1m′′

m′′−1∏
m′=1,m′ 6=m

(1− λ•m′) (101)

∂π

∂λ1m
=

m−1∏
m′=1

(1− λ•m′) +
∂π

∂λ2m
(102)

Now we can write

D = ∆(D1, · · · , DK) (103)

Dk =

(
Dk1

Dk2

)
(104)

Dk1m =

m−1∏
m′=1

(1− λ•m′) +Dk2m (105)

Dk2m = −
M∑

m′=m+1

λ1m′

m′−1∏
m′′=1,m′′ 6=m

(1− λ•m′′) (106)
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1.10 Hosmer-Lemeshow statistic

To evaluate the validity of the model that predicts risks rn, we use the Hosmer-Lemeshow chi-square statistic

χ2
K =

K∑
k=1

(π̂k − r̃k)2

σ̂2
k

(107)

where r̃k is a central measure of rn for subjects in risk group k.

1.11 AUC

The AUC is defined

AUC(ξ) =

∑K
k=1 γ

2
k(1− πk)πk +

∑K
k=1

∑
k′>k γkγk′(1− πk)πk′

2(1− π)π
(108)

π =

K∑
k=1

γkπk (109)

We will want to calculate a confidence interval for the AUC. Since the values of the AUC fall inside the unit
interval, we will define B = logit(A) = log(AUC/(1−AUC)) = log(AUC)− log(1−AUC) and we will approximate
the distribution of B̃ to be Normal with mean logit(AUC)) and variance

Var
(
B̃
)

=
DBD

T
AUC Σ DAUCDB

N
(110)

DB =
∂B

∂AUC
=

∂

∂AUC
(
log(AUC)− log(1−AUC)

)
(111)

=
1

AUC
− 1

1−AUC
=

1

AUC(1−AUC)
(112)

DT
AUC =

(
∂
∂γ1

· · · ∂
∂γK−1

∂
∂π1

· · · ∂
∂πK

)
AUC(ξ) (113)

Then we form a 95 percent confidence interval for B:
[
B̃ − 1.96σ, B̃ + 1.96σ

]
where σ =

√
Var(B̃). and then a 95

percent confidence interval for AUC is
[
logistic(B̃ − 1.96σ), logistic(B̃ + 1.96σ)

]
.

1.11.1 Break up AUC(ξ)

(We are going to use the delta method again. This time, we are going to transform the random variable ξ̂ to AUC.
The transformation will be written in terms of f and g, which are different from the f and g from section (1.9).)

Rewrite
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AUC(ξ) =
1
2f1(ξ) + f2(ξ)

g(ξ)
(114)

f1(ξ) =

K∑
k=1

γ2
k(1− πk)πk (115)

f2(ξ) =
K−1∑
k′=1

K∑
k′′=k′+1

γk′γk′′(1− πk′)πk′′ (116)

g(π) = (1− π)π (117)

1.11.2 Calculating f1(ξ) =
∑K

k=1 γ
2
k(1− πk)πk

Calculate the partial derivative with respect to γk. Ignoring the constraint on the γks,

∂f1

∂γk
= 2γk(1− πk)πk (118)

and then imposing the constraint,

∂f1

∂γk
= 2

(
γk(1− πk)πk − γK(1− πK)πK

)
(119)

Also,

∂f1

∂πk
= γ2

k

(
1− 2πk

)
(120)

And putting them all together,

∂f1

∂γk
= 2

(
γk(1− πk)πk − γK(1− πK)πK

)
(121)

∂f1

∂πk
= γ2

k

(
1− 2πk

)
(122)

1.11.3 Calculating f2(π) =
∑K−1

k′=1

∑K
k′′=k′+1 γk′γk′′(1− πk′)πk′′

To see how to proceed, it helps to imagine differentiating with respect to γ3 or π3. Here are the possible values of
(k′, k′′)

12 13 14 15
23 24 25

34 35
45
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All the places where 3 shows up are k′ = 1, 2 and so k′′ = 3 and k′ = 3 and k′′ = 4, 5. Ignoring the constraints on
the γks,

∂f2

∂γk
=

k−1∑
k′=1

γk′(1− πk′)πk +
K∑

k′′=k+1

γk′′(1− πk)πk′′ (123)

∂f2

∂γK
=

K−1∑
k′=1

γk′(1− πk′)πK (124)

and then imposing the constraint,

∂f2

∂γk
=

k−1∑
k′=1

γk′(1− πk′)πk +

K∑
k′′=k+1

γk′′(1− πk)πk′′ −
K−1∑
k′=1

γk′(1− πk′)πK (125)

for k = 1, · · · ,K − 1. Using the same reasoning as for the unsconstrained calculation for the γk, we get a similar
expression for the derivative with respect to πk, and putting them together,

∂f2

∂γk
=

k−1∑
k′=1

γk′(1− πk′)πk +
K∑

k′′=k+1

γk′′(1− πk)πk′′ −
K−1∑
k′=1

γk′(1− πk′)πK (126)

∂f2

∂πk
=

k−1∑
k′=1

γk′γk(1− πk′)−
K∑

k′′=k+1

γkγk′′πk′′ (127)

1.11.4 Calculating g(ξ) = (1− π)π

Before differentiating g, first calculate without regard to the constraint

∂π

∂γk
=

∂

∂γk

K∑
k=1

γkπk = πk (128)

and then imposing the constraint,

∂π

∂γk
= πk − πK (129)

Also,

∂π

∂πk
= γk (130)

Next, write
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g(ξ) = (1− π)π = π − π2 (131)
∂g(ξ)

∂γk
= (1− 2π)

∂π

∂γk
= (1− 2π)(πk − πK) (132)

∂g(ξ)

∂πk
= (1− 2π)

∂π

∂πk
= (1− 2π)γk (133)

Finally, use the quotient rule to calculate

∂

∂ξi
(AUC) =

∂

∂ξi

(
f1
2 + f2

g

)
=

∂(
f1
2

+f2)

∂ξi
g − (f12 + f2) ∂g∂ξi
g2

(134)

1.12 SD of a Risk Model

The standard deviation of outcome probabilities across the risk groups is defined as

SD =

√√√√ K∑
k=1

γk(πk − π)2 (135)

where π =
∑K

k=1 γkπk is defined by equation (109). This formula for SD is equation (4) of Whittemore and Halpern
2010.

To get an estimate for SD, substitute estimates for true values

S̃D =

√√√√ K∑
k=1

γ̃k(π̃k − π̃)2 (136)

where π̃ =
∑K

k=1 γ̃kπ̃k

To obtain confidence intervals, we again use the delta method. From Equation (91), ξ̃ =

(
γ̃
π̃

)
∼ Normal(

(
γ̃
π̃

)
, Σ
N )

In this section, define the function f(ξ) to be

f(ξ) = VAR =
K∑
k=1

γk(πk − π)2 (137)

By the delta method,

Var(VAR) = DT Σ

N
D (138)

DT =

(
∂

∂γ1
, · · · , ∂

∂γK−1
,
∂

∂π1
, · · · , ∂

∂πK

)
f(ξ) (139)

First take derivatives of π.
∂π

∂γk
= πk − πK , k = 1, · · ·K − 1 (140)

∂π

∂πk
= γk (141)
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Next, take derivatives of f(ξ) with respect to γk

∂f(ξ)

∂γk
=

K∑
k′=1

∂

∂γk

(
γk′
(
πk′ − π

)2) (142)

=

K∑
k′=1

(
∂γk′

∂γk

(
πk′ − π

)2
+ γk′

∂

∂γk

(
πk′ − π

)2) (143)

=
(
πk − π

)2 − (πK − π)2 − 2

K∑
k′=1

(
γk′
(
πk′ − π

)(
γk − γK

)
(144)

=
(
πk − π

)2 − (πK − π)2 (145)

And then take derivatives of f(ξ) with respect to πk

∂f(ξ)

∂πk
=

K∑
k′=1

∂

∂πk

(
γk′
(
πk′ − π

)2) (146)

=

K∑
k′=1

γk′
∂

∂πk

((
πk′ − π

)2) (147)

=

K∑
k′=1

γk′2
(
πk′ − π

) ∂

∂πk

(
πk′ − π

)
(148)

=
K∑
k′=1

γk′2
(
πk′ − π

)(
δk,k′ − γk

)
(149)

= 2γk
(
πk − π

)
(150)

Finally, write SD = g(VAR) =
√
VAR. Using the delta method again, Var(SD) = g′(VAR)2Var(VAR). where

g′(VAR) = 1
2SD. We get

Var(SD) =
1

4VAR
DT Σ

N
D. (151)

2 Ungrouped Analysis

2.1 Introduction

Suppose a risk model is used to assign risks to N subjects at entry to a cohort study. We follow the subjects until
time t∗ and record for each subject a followup time T , an event status E, and an assigned risk R where

T = min(t∗, U, C) (152)
U = time to disease or death (153)
C = time to censoring (154)

E =


0 if censored
1 if disease
2 if death from other causes

(155)
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The joint probability that an individual is assigned risk R = r and experiences event E = j, j = 1, 2 in the period
(0, t∗) is

P
(
U ≤ t and E = j and R = r

)
= fR(r)Fjr(t) (156)

fR(r) = the probability density function of R (157)
Fjr(t) = P

(
U ≤ t and E = j

∣∣R = r
)

(158)

The quantity Fjr(t) is the event-specific cumulative incidence function among those assigned risk r. Our goals
are to estimate the probabilites g(r) = fR(r) and π(r) = F1r(t

∗) and use functions of the estimates to assess
model calibration (how well assigned risks agree with subsequent outcomes) and discrimination (how well the risks
distinguish those who do and do not develop the outcome in the risk period).

Our previous work corresponds to the special case in which individual risks have been grouped into K bins or risk
groups and summarized by means or medians 0 ≤ r1 < · · · < rK ≤ 1 with γk = g(rk) and nonparametric estimates
obtained for the group-specific outcome probabilities πk, k = 1, · · · ,K. Here we generalize this approach by using
the nearest neighbor estimates (NNEs) proposed by Akritos (1994) and Saha and Heagerty (2010).

2.2 Estimation

Let R denote the set of distinct assigned risks. For each ρ ∈ R, estimate g(ρ) by the empirical pdf

ĝ(ρ) =

∣∣{n : rn = ρ}
∣∣

N
(159)

and estimate π̂(ρ) by (1) Obtain a ε kernel nearest neighborhood of ρ

NN (ρ) =

{
n :
∣∣Ĝ(rn)− Ĝ(ρ)

∣∣ < ε

}
. (160)

(2) Considering all observations in NN (ρ) to be one bin or risk group, use our previous methodology to estimate
the group-specific outcome probability πNN (ρ).

For two-stage sampling, replace Equation (159) with

ĝ(ρ) =

∑
n an1(rn = ρ)∑

n an
(161)

2.3 Calibration

We compute a calibration curve or an individualized attribute diagram, defined to be a scatterplot of points
{ρ, π̂(ρ) : ρ ∈ R} with line segments connecting adjacent points. 95 percent (nonsimultaneous) confidence bands
for this curve are obtained by calculating bootstrap estimates of the standard deviation of π̂(ρ).
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